CHAT Geometry – First Semester Extra Credit

<u>Instructions</u>: Complete the work on the worksheets. Number all statements and reasons

<u>Note</u>: This is an <u>open book</u> activity. You can use your notes, your book, and your theorem sheets.

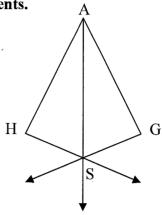
Extra Credit Amount:

5 points for scores of 50% - 60%

8 points for scores of 61% - 74%

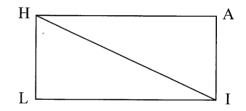
10 points for scores of 75% - 90%

12 points for scores of 91% - 100%

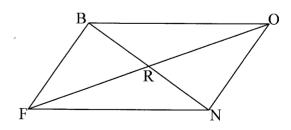

CHAT Geometry – First Semester Extra Credit

CONGRUENT TRIANGLE REVIEW

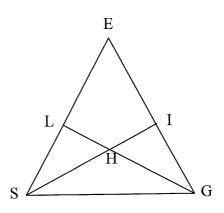
I. Use a two-column proof to justify the following statements.


1. Given: AS bisects $\angle HAG$; $\angle H \cong \angle G$

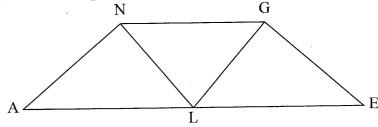
Prove: $\overline{HS} \cong \overline{GS}$


2. Given: $\overline{HL} \perp \overline{LI}; \overline{HA} \perp \overline{AI}; \overline{HA} \cong \overline{IL}$

Prove: $\overline{HL}//\overline{IA}$


3. Given: $\overline{BF} \cong \overline{ON}$; $\overline{BF} / / \overline{ON}$

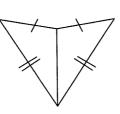
Prove: R is the midpoint of \overline{BN}


4. Given: $\angle LSG \cong \angle IGS; \overline{LG} \perp \overline{ES}; \overline{SI} \perp \overline{EG}$

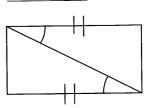
Prove: $\overline{EI} \cong \overline{EL}$

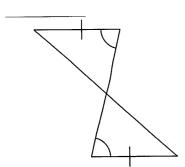
5. Given: $\overline{AN} \perp \overline{NL}$; $\overline{LG} \perp \overline{GE}$; $\angle GNL \cong \angle NGL$; L is the midpoint of \overline{AE}

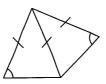
Prove: $\angle A \cong \angle E$

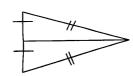


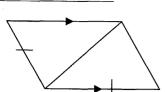
II. Name the theorem or postulate that justifies the following pairs of triangles are congruent. If there is not enough information, write none.

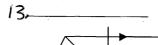

6. _____

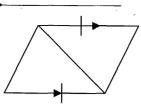

7. _

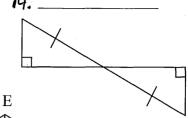

8.

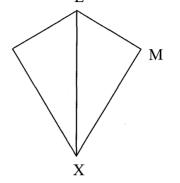

9.

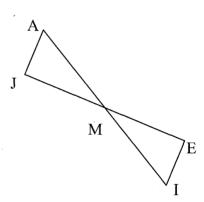

10.



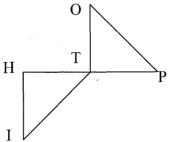

11.





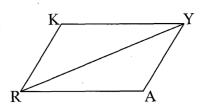


T



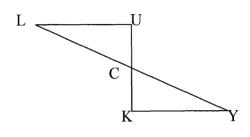
- 15. $\overline{\text{EX}}$ bisects $\angle \text{TEM}$, $\overline{\text{TE}} \cong \overline{\text{EM}}$
 - 16. $\overline{\text{TE}}\bot\overline{\text{XT}}$, $\overline{\text{ME}}\bot\overline{\text{XM}}$, $\angle\text{TEX} \cong \angle\text{MEX}$
 - 17. $\overline{\text{TE}} \cong \overline{\text{EM}}$, $\overline{\text{TX}} \cong \overline{\text{XM}}$
 - 19. $\overline{TX} \cong \overline{XM}$, \overline{EX} bisects $\angle TEM$
 - 19, \overline{EX} bisects $\angle TXM$, $\angle T \cong \angle M$
- ∂D , M is the midpoint of \overline{JE} , $\angle A \cong \angle I$
 - λ . $\overline{JA}\perp \overline{JE}$, $\overline{EI}\perp \overline{JE}$, $\overline{JM} \cong \overline{EM}$
 - A). M is the midpoint of \overline{JE} , $\overline{AJ} \cong \overline{IE}$
 - $\lambda 3. \overline{JA} \perp \overline{JE}, \overline{EI} \perp \overline{JE}, \angle A \cong \angle I$

III. Given that \triangle HIT \cong \triangle TOP, write an equation and solve for x in each of the following.

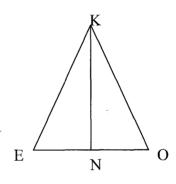

24. HT =
$$2x + 10$$
, TP = $4x + 6$, TO = $6x - 6$

25. IT =
$$4x + 20$$
, OT = $6x$, IH = $2x + 44$

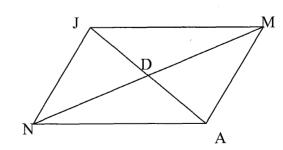
II. Proofs


36. Given: $\overline{KY} \cong \overline{RA}$, $\overline{KY} // \overline{RA}$

Prove: $\overline{KR} \cong \overline{AY}$


37. Given: $\overline{LU}\bot\overline{KU}$, $\overline{YK}\bot\overline{KU}$, C is the midpoint of \overline{LY}

Prove: $\overline{LU} \cong \overline{YK}$


28. Given: KN bisects ∠EKO, KN⊥EO

Prove: $\overline{KE} \cong \overline{KO}$

29. Given: $\overline{JN}//\overline{AM}$, D is the midpoint of \overline{JA}

Prove: $\overline{ND} \cong \overline{MD}$

