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Multivariable Linear Systems 
 
Look at the following equivalent systems: 
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The 2
nd

 system is in row-echelon form.  This means that it 
has a “stair-step” pattern with leading coefficients of 1.  A 
system in row-echelon form is easier to solve.  Use back-
substitution. 
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The solution to the system is (1, -1, 2).  This is called an 
ordered triple. 
 

Solving a system of equations by transforming it into row-
echelon form is called Gaussian Elimination. 
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Operations That Produce Equivalent Systems 
 
Each of the following row operations will transform a 
system of equations into an equivalent system of equations.  
 

1. Interchange two equations.  
2. Multiply any of the equations by a nonzero constant.  
3. Add a multiple of one equation in the system to another 

equation to replace the latter equation.  
 

 
Example:  Solve the system using Gaussian Elimination 
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Now use back-substitution. 
 

9

18

1)4(2

12









x

x

x

yx

 

 
 

The solution is (9, 4). 
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Example:  Solve the system. 
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232  zyx  Add -1 times the 2nd 
equation to the 3

rd
 

equation, and replace the 
3

rd
 equation with the sum 

equation. 
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Add -2 times the 2nd 
equation to the 1st 
equation, and replace the 
1st equation with the sum 
equation. Rearrange 
equations. 
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Solve for z and then back-substitute. 
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The solution is (5, -3, 3). 
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Add -3 times the 2nd 
equation to 8 times the 
3rd equation, and 
replace the 2nd 
equation with the sum 
equation. Rearrange 
equations. 
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Example:  Solve the system. 
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We added -2 times the first equation to the 2

nd
 equation. 

We added -3 times the 1
st
 equation to the 3

rd
 equation. 
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We added -10 times the 2

nd
 equation to the 3

rd
 equation. 

We divided through the 3
rd

 equation by 22. 
 
By back-substitution we get the solution (1, 2, 3). 
 
Example:  Solve the system. 
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If we get 
something like 
0=5, which is 
never true, 
there is no 
solution. 
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Example:  Solve the system. 
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Since 0=0 is always true, there are infinitely many solutions.  
What we can do when there are infinitely many solutions 
(for any system) is let z = a (an arbitrary variable).  Then 
back-substitute. 
 
 
Let z = a 
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The solution is (a+1, 1-2a, a). 
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Nonsquare Systems 
 
A nonsquare system is one in which the number of 
unknowns is not the same as the number of equations. 
 
Example:  Solve the system. 
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
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Add -2 times the 1

st
 equation to the 2

nd
 equation.  Then 

multiply the 3
rd

 equation by 1/3.  
 
Solve for y.                       Put that in the 1

st
 equation and 

solve for x. 
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Our solution is (z, z-1, z).  Since z can be any number, use a 
instead to get the solution (a, a-1, a). 



CHAT Pre-Calculus 
Section 7.3 

 

8 
 

Example:  The following equivalent system is obtained 
during the course of Gaussian elimination. Write 
the solution of the system. 
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Let z = a.  Then back-substitute into the 2

nd
 equation. 
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The solution is (5a-12, 8-2a, a). 
 
 
Example:  Solve the following system. 
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Add -5 times the first 1

st
 equation to the 2

nd
 equation.  

Replace the 2
nd

 equation with the sum. 
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
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nd

 equation by 2. 
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


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The solution is (- 5z+3, -z - 5, z). 
 
 
 
 
 
 

-5x+15y -10z  = -90 
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Graphical Interpretation of Solutions 
 
For a system of linear equations in three variables, the 
number of solutions is one of the following: 
 

 There is exactly one solution (a point). 

 There are infinitely many solutions (either a single line, 
or they all name the same plane). 

 There is no solution. 
 
 
Applications 
 
Problem:  Find the equation of the parabola y = ax

2
 + bx +c 

that passes through the points (1, 6), (-1, 4), and 
(2, 13).  

 
We get 3 equations that must be true, since all 3 points 
must work in the equation. 
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




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
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From this we can get the following system: 
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




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
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Solving the system we get (2, 1, 3).  Putting them back into 
our quadratic equation we get: 
 
                                  y = 2x

2
 + x + 3 
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Problem:  During the second game of the 2002 Western 
Conference finals, the Los Angeles Lakers scored a total of 
90 points, resulting from a combination of three-point 
baskets, two-point baskets, and one-point free-throws.  
There were 11 times as many two-point baskets as three-
point baskets and five times as many free-throws as three-
point baskets.  What combination of scoring accounted for 
the Lakers’ 90 points? 
 
Let x = number of 3-point baskets 
Let y = number of 2-point baskets 
Let z = number of 1-point free-throws 
 


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
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
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5
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Substitute for y and z in the 1
st
 equation. 
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
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
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
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Solution:  3  3-point, 33  2-point, 15  1-point baskets 
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Problem:  A small corporation borrowed $800,000 to 
expand its line of toys.  Some of the money was borrowed 
at 8%, some at 9%, and some at 10%.  How much was 
borrowed at each rate if the annual interest owed was 
$67,000 and the amount borrowed at 8% was five times the 
amount borrowed at 10%? 
 
Let x = amount at 8% 
Let y = amount at 9% 
Let z = amount at 10% 
 














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5
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



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
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
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




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
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
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Multiply 100 times the 
2nd equation. 

Multiply -1 times the 
3rd equation and add 
it to the 1

st
 equation. 

Multiply -8 times the 
3rd equation and add 
it to the 1

st
 equation. 
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
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












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000,8006








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zy

   
000,625

0)000,125(5
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
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

x
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Solution:  x = $625,000 at 8% 

y = $50,000 at 9% 
z = $125,000 at 10% 
 
 
 
 

 

Multiply -9 times the 
2nd equation and add 
it to the 3rd equation. 

Solve for z and then 
back-substitute. 


