Week 26 Algebra 2 Assignment:

Day 1: pp. 478-479 #1-9 odd, 17, 19 Day 2: p. 482 #1-23 odd Day 3: Chapter 11 test Day 4: pp. 487-488 #1-7 odd, 9-19, 23-27 Day 5: pp. 491-492 #1-6, 7-19 odd, 22, 25-27

Notes on Assignment:

Pages 478-479:

Work to show:

All problems: Show work to solve.

- #1-3: Solve these for the trig function and then ask yourself where on the unit circle does the trig function equal that number?
- #5: Solve for cos x.
- #7: Get everything in terms of either sine or cosine using the Pythagorean identities and then solve.
- #9: Get everything in terms of either sine or cosine using the Pythagorean identities and then solve.
- #17: The sine of your "stuff" equals $\frac{\sqrt{2}}{2}$. So what does your "stuff" have to equal? Set it equal and then solve for x.

Page 482:

Chapter Review - no notes

Work to show: All problems: Show work to solve.

Chapter 11 test:

*Students may use one 4x6 note card for this test and their calculator.

For the test: Know when and how to use the Law of Sines and Law of Cosines. Know the domain, range, and period of the 3 basic trig functions. Solve trig equations. Evaluate sum and difference formulas. Prove trig identities. Solve word problems involving non-right triangles.

Pages 487-488:

Work to show:

#1-7: Answer as directed#9-15: Show work finding inverses.#17-19: Answer as directed#23-27: Show factoring and canceling

- #1-3: Write these as simple sets of points. Your answers will vary.
- #9-12: When finding the inverse of a function:
 - 1. Write a y in place of the f(x).
 - 2. Exchange the x and the y in the equation.
 - 3. Solve for y.
 - 4. Put f⁻¹(x) back in for the y.
- #13: Remember that (fBg)(x) is the same as f(g(x)), which means to take the function g(x) and put it into the function f. So for this problem, take the function $f^{-1}(x)$ and put it into the function f.

#23-27: Factor and cancel.

Pages 491-492:

Work to show: #1-6: Table and/or graph #7-22: Answers only #25-27: Show work as needed.

#1-4: Use only as many values in the table as you need.

- #5: The principal values fo the inverse cosine relation go from 0 to π , to in your table, put values from 0 to π in your y-column. Use your calculator and the cos⁻¹ button to find the corresponding values for the x-column.
- #6: Do this similarly to #5.
- #7: This is asking, "Where is the sine equal to $\frac{\sqrt{2}}{2}$?"
- #11-15: Remember the principal ranges:
 - Sin⁻¹ will only return angles from $-\frac{\pi}{2}to\frac{\pi}{2}$.
 - Cos⁻¹ will only return angles from 0 to π .
 - Tan⁻¹ will only return angles from $-\frac{\pi}{2}to\frac{\pi}{2}$.
- #22: You are finding the sine of the angle whose secant is 1.5. Find Sec⁻¹1.5 first. (Try writing Sec⁻¹ in terms of Cos⁻¹).