Trigonometry in the Cartesian Plane

*Trigonometry comes from the Greek word meaning "*measurement of triangles*." It primarily dealt with angles and triangles as it pertained to navigation, astronomy, and surveying. Today, the use has expanded to involve rotations, orbits, waves, vibrations, etc.

Definitions:

- An <u>angle</u> is determined by rotating a ray (half-line) about its endpoint.
- The <u>initial side</u> of an angle is the starting position of the rotated ray in the formation of an angle.
- The <u>terminal side</u> of an angle is the position of the ray after the rotation when an angle is formed.
- The <u>vertex</u> of an angle is the endpoint of the ray used in the formation of an angle.

• An angle is in <u>standard position</u> when the angle's vertex is at the origin of a coordinate system and its initial side coincides with the positive *x*-axis.

• A <u>positive angle</u> is generated by a counterclockwise rotation; whereas a <u>negative angle</u> is generated by a clockwise rotation.

• An angle can be the result of more than one full rotation, in either the positive or negative direction.

• If two angles are <u>coterminal</u>, then they have the same initial side and the same terminal side.

- The <u>reference angle</u> for an angle in standard position is the acute angle that the terminal side makes with the x-axis.
- The <u>reference triangle</u> is the right triangle formed which includes the reference angle.

The reference angle is θ' .

Example: Find the reference angle for the following angles.

a) $\theta = 125^{\circ}$

answer: $\theta' = 180^{\circ} - 125^{\circ} = 55^{\circ}$

b) $\theta = 330^{\circ}$

answer: $\theta' = 360^{\circ} - 330^{\circ} = 30^{\circ}$

c) $\theta = -230^{\circ}$

answer: $\theta' = 230^{\circ} - 180^{\circ} = 50^{\circ}$

d) $\theta = 220^{\circ}$

answer: $\theta' = 220^{\circ} - 180^{\circ} = 40^{\circ}$

e) $\theta = -100^{\circ}$

answer: $\theta' = 180^{\circ} - 100^{\circ} = 80^{\circ}$

Definition of Trig Values for Acute Angles

$$\sin A = \frac{opp}{hyp} = \frac{y}{r} \qquad \csc A = \frac{r}{y}$$
$$\cos A = \frac{adj}{hyp} = \frac{x}{r} \qquad \sec A = \frac{r}{x}$$
$$\tan A = \frac{opp}{adj} = \frac{y}{x} \qquad \cot A = \frac{x}{y}$$

with *x*, *y*, and $r \neq 0$.

Definition of Trig Values of Any Angle

Let θ be any angle in standard position with (*x*, *y*) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$. Then

$$\sin \theta = \frac{y}{r} \qquad \qquad \csc \theta = \frac{r}{y}, \quad y \neq 0$$
$$\cos \theta = \frac{x}{r} \qquad \qquad \sec \theta = \frac{r}{x}, \quad x \neq 0$$
$$\tan \theta = \frac{y}{x}, \quad x \neq 0 \qquad \qquad \cot \theta = \frac{x}{y}, \quad y \neq 0$$

*<u>Note</u>: The value of *r* is always positive, but the signs on *x* and y depend on the point (x, y), which will change depending on which quadrant (x, y) is in.

allsintancos!!!!

 $(all)(sin)(tan)(cos) \rightarrow What functions are positive, starting with Quadrant I.$

Let's look at what the reference triangles look like when we choose (x, y) so that r=1.

Now we have:

$$\sin A = \frac{y}{r} = \frac{y}{1} = y \qquad \csc A = \frac{1}{y}$$
$$\cos A = \frac{x}{r} = \frac{x}{1} = x \qquad \sec A = \frac{1}{x}$$
$$\tan A = \frac{y}{x} \qquad \cot A = \frac{x}{y}$$

**As long as r = 1, we have: $\cos A = x$ $\sin A = y$

Look at a circle with radius = 1.

**For any coordinates on the unit circle, its coordinates are $(\cos \theta, \sin \theta)$ where θ is an angle in standard position.

**If θ is <u>not</u> an acute angle, then we find the coordinates (x,y) (ie. $\cos \theta$, $\sin \theta$) by using the reference triangle.

Now take the unit circle and look at the common angles, their various reference triangles, and their trig values.

The Unit Circle

The cosine of angle θ is the *x*-coordinate. The sine of angle θ is the *y*-coordinate. $(x,y) = (\cos \theta, \sin \theta)$

Finding Trig Values with a Calculator

Example: Find the following.

a) csc 220°

- Find sin 220° first.
- For sin 220° use the reference angle and find sin 40°.
- Since 220° is in quadrant III, sin 220° is negative
- So sin 220° = -.6428
- Then $\csc 220^\circ = 1/\sin 220^\circ = -1.5557$

b) cot(-230°)

- Find tan(-230°) first.
- For tan(-230°) use the reference angle and find tan 50°.
- Since -230° is in quadrant II, tan(-230°) is negative.
- So tan(-230°) = -1.1918
- Then $\cot(-230^\circ) = 1/\tan(-230^\circ) = -.8391$.

c) cos 330°

- The reference angle is 30°.
- Since 330° is in quadrant IV, cos 330° is positive.
- Then cos 330° = .8660

Radian Measure

Definitions:

- The <u>measure of an angle</u> is determined by the amount of rotation from the initial side to the terminal side.
- A <u>central angle</u> is one whose vertex is the center of a circle.
- One <u>radian</u> is the measure of a central angle Θ that intercepts an arc s equal in length to the radius r of the circle.

 θ is <u>1 radian</u> in size.

How many radians are in a circle?

There are about 6 $\frac{1}{3}$ radians in a circle.

We know that the circumference of a circle is $2\pi r$.

This means that the circle itself contains an angle of rotation of 2π radians. Since 2π is approximately 6.28, this matches what we found above. There are a little more than 6 radians in a circle. (2π to be exact.)

Therefore: A <u>circle</u> contains 2π radians.

- A <u>semi-circle</u> contains π radians of rotation.
- A <u>quarter of a circle</u> (which is a right angle) contains $\pi/2$ radians of rotation.

Definition: A <u>degree</u> is a unit of angle measure that is equivalent to the rotation in 1/360th of a circle.

Because there are 360° in a circle, and we now know that there are also 2π radians in a circle, then $2\pi = 360^{\circ}$.

$360^\circ = 2\pi$ radians	2π radians = 360°
$180^{\circ} = \pi$ radians	1π radians = 180°
$1^{\circ} = \frac{\pi}{180}$ radians	1 radian = $\frac{180^{\circ}}{\pi}$

To convert <u>radians to degrees</u>, multiply by $\frac{180^{\circ}}{\pi}$. To convert <u>degrees to radians</u>, multiply by $\frac{\pi}{180}$.

Example: Convert 120° to radians.

$$120^{\circ} = 120(\frac{\pi}{180}) = \frac{120\pi}{180} = \frac{2\pi}{3}$$

Example: Convert -315° to radians.

$$-315^{\circ} = -315(\frac{\pi}{180}) = \frac{-315\pi}{180} = \frac{-7\pi}{4}$$

Example: Convert $\frac{5\pi}{6}$ to degrees.

$$\frac{5\pi}{6} = \frac{5\pi}{6} \left(\frac{180}{\pi} \right) = \frac{900}{6} = 150^{\circ}$$

Example: Convert 7 to degrees.

$$7 = 7 \left(\frac{180}{\pi}\right) = \frac{1260}{\pi} = 401.07^{\circ}$$

This makes sense, because 7 radians would be a little more than a complete circle, and 401.07° is a little more that 360°

<u>*Notice</u>: If there is no unit specified, it is assumed to be radians.

*It is important to be familiar with the most common angles in radians and degrees.

Degree and Radian Equivalent measures

19

The Unit Circle

The cosine of angle θ is the *x*-coordinate. The sine of angle θ is the *y*-coordinate.

 $(x,y) = (\cos \theta, \sin \theta)$

Example: Using the unit circle, find the following.

a) $\sin \frac{3\pi}{4}$ answer : $\frac{\sqrt{2}}{2}$ b) $\cos \frac{-\pi}{2}$ answer : 0 c) $\tan 300^{\circ}$ answer : $\frac{-\sqrt{3}}{2} \cdot \frac{2}{1} = -\sqrt{3}$ d) $\csc \pi$ answer : $\frac{1}{0} = undefined$