Trig Functions

Definition: If x is an angle in radians, then the following are trigonometric functions:

 $f(x) = \sin x$ $f(x) = \cos x$ $f(x) = \tan x$

Graph f(x) = sin x. This is the same as y = sin x and y = sin(x)

X	У	Х	У	Х	У
0	0	Π	0	0	0
π	1	7π	_ 1	$\frac{13\pi}{6}$	1
6	2	6	2	0	2
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2} \approx 0.7$	$\frac{5\pi}{4}$	$\frac{-\sqrt{2}}{2} \approx -0.7$	$\frac{9\pi}{4}$	$\frac{\sqrt{2}}{2} \approx 0.7$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2} \approx 0.87$	$\frac{4\pi}{3}$	$\frac{-\sqrt{3}}{2} \approx -0.87$	$\frac{7\pi}{3}$	$\frac{\sqrt{3}}{2} \approx 0.87$
$\frac{\pi}{2}$	1	$\frac{3\pi}{2}$	-1	$\frac{5\pi}{2}$	1
$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2} \approx 0.87$	$\frac{5\pi}{3}$	$\frac{-\sqrt{3}}{2} \approx -0.87$	$\frac{8\pi}{3}$	$\frac{\sqrt{3}}{2} \approx 0.87$
$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2} \approx 0.7$	$\frac{7\pi}{4}$	$\frac{-\sqrt{2}}{2} \approx -0.7$	$\frac{11\pi}{4}$	$\frac{\sqrt{2}}{2} \approx 0.7$
5π	1	11π		17π	1
6	2	6	2	6	2
π	0	2π	0	3π	0

The <u>Domain</u> of $y=\sin x$ is the set of all real numbers. The <u>Range</u> of $y = \sin x$ is $-1 \le y \le 1$.

The portion of the graph of $y = \sin x$ that includes one period is called one <u>cycle</u> of the sine curve.

Every period of the sine curve has **5 key points**: the intercepts and a minimum and maximum point.

For one period of the sine curve, the x-intercepts occur at (0, 0), (π , 0), and (2π , 0). The maximum point is ($\pi/2$, 1) and the minimum point is ($3\pi/2$, -1).

Graph $y = \cos x$.

The <u>Domain</u> of $y = \cos x$ is the set of all real numbers. The <u>Range</u> of $y = \cos x$ is $-1 \le y \le 1$.

The portion of the graph of $y = \cos x$ that includes one period is called one <u>cycle</u> of the cosine curve.

Every period of the cosine curve has **5 key points**: the intercepts and a minimum and maximum point.

For one period of the sine curve, the *x*-intercepts occur at $(\pi/2, 0)$, and $(3\pi/2, 0)$. The maximum point is (0, 1) and $(2\pi, 0)$ and the minimum point is $(\pi, -1)$.

**Both sine and cosine curves have a period of 2π . We consider the interval from 0 to 2π as the basic cycle.

The <u>Domain</u> is all real numbers except multiples of $\frac{\pi}{2}$. (We say the domain is all $x \neq \frac{\pi}{2} + n\pi$)

The Range is the set of all real numbers.

 $y = \tan x$

- The period for tangent is π .
- One cycle is $\frac{-\pi}{2} < x < \frac{\pi}{2}$. (Note that it's not \leq)
- One cycle goes from $\frac{-\pi}{2}$ to $\frac{\pi}{2}$.
- There is a vertical asymptote at $x = \frac{\pi}{2} \pm n\pi$ (at every x-value for which the tangent is undefined.)
- The Domain is all $x \neq \frac{\pi}{2} + n\pi$
- The Range is all real numbers.

• All three trig functions are <u>periodic functions</u> because there is a repeating pattern.

• For sine and cosine, the basic period is 2π . • For tangent, the basic period is π .

- The graphs of sine and cosine are <u>continuous</u> because there are no breaks.
- The graph of tangent is <u>discontinuous</u> because there are jumps/breaks (where the asymptotes are).

<u>Amplitude</u>

On a graphing calculator, graph $y = \sin x$ $y = 2\sin x$ $y = 5\sin x$ $y = \frac{1}{2}\sin x$

What can you conclude?

As the number being multiplied out front increases, the graph of y = sin x stretches vertically.

Definition: The amplitude of $y = a \sin x$ and $y = a \cos x$ represents half the distance between the maximum and minimum values of the function and is given by Amplitude = |a|.

- *<u>Note</u>: If *a* is a negative number, the graph of the function will be reflected over the *x*-axis.
- **Example**: Graph $y = -\sin x$. Graph $y = -2\sin x$.

See that these are the same as $y = \sin x$ and $y = 2\sin x$, but they are "up-side-down."

Example of amplitudes:

The amplitude of $y = \sin x$ is 1. The amplitude of $y = 2 \sin x$ is 2. The amplitude of $y = 5 \sin x$ is 5. The amplitude of $y = \frac{1}{2} \sin x$ is $\frac{1}{2}$. The amplitude of $y = -13 \sin x$ is 13. (*not*-13)

Graph $y = 4 \sin x$

The period remains the same, but the amplitude changes.

Graph $y = 3 \cos x$

Graph $y = -2 \cos x$

Changing the Period of Sine and Cosine

On a graphing calculator graph: $y = \sin x$ $y = \sin 2x$

What do you notice?

The length of one cycle is half as long for y = sin 2x.

Definition: Let b be a positive real number. The period of $y = a \sin bx$ and $y = a \cos bx$ is $2\pi/b$.

Example: Find the period of $y = \cos 6x$.

The period =
$$\frac{2\pi}{b} = \frac{2\pi}{6} = \frac{\pi}{3}$$

Example: Find the period of $y = sin \frac{x}{5}$.

The period =
$$\frac{2\pi}{b} = \frac{2\pi}{\frac{1}{5}} = 2\pi \cdot \frac{5}{1} = 10\pi$$

<u>Note</u>: Once you know the basic shape of the sine and cosine curves, it is basically a matter of making adjustments to the axes labels.

Example: Graph y = 3sin 4x.

