Geometry Week 12 sec. 6.4 – sec. 6.6

section 6.4

Definitions:

Two coplanar lines that do not intersect are parallel.

A transversal is a line that intersects two or more distinct coplanar lines in two or more distinct points.

t is a transversal

t is a transversal

t is a transversal

t is not a transversal

Terms for angles formed when a transversal intersects 2 lines:

 $\angle 3 \text{ and } \angle 6 \text{ are } \frac{\text{alternate interior}}{\text{angles}}$

 $\angle 1$ and $\angle 8$ are <u>alternate exterior</u> <u>angles</u>

 $\angle 2 \text{ and } \angle 6 \text{ are } \frac{\text{corresponding}}{\text{angles}}$

Definitions:

<u>Alternate interior angles</u> are angles which are on opposite sides of the transversal and between the other two lines.

<u>Alternate exterior angles</u> are angels on opposite sides of the transversal and outside the other two lines.

<u>Corresponding angles</u> are angles on the same side of the transversal and on the same side of their respective lines.

Sample Problem:

t is a transversal *n* and *m* are parallel lines

1. Name the pairs of alternate interior angles.

 $\angle 3$ and $\angle 6$ $\angle 4$ and $\angle 5$

2. Name all pairs of alternate exterior angles.

 $\angle 1$ and $\angle 8$ $\angle 2$ and $\angle 7$

3. Name all pairs of corresponding angles.

∠1 and ∠5 ∠2 and ∠6 ∠3 and ∠7 ∠4 and ∠8

4. Name all pairs of vertical angles.

∠1 and ∠4 ∠2 and ∠3 ∠5 and ∠8 ∠6 and ∠7

5. What relationship seems to be true regarding alternate interior angles?

They are congruent.

Parallel Postulate: Two lines intersected by a transversal are parallel if and only if the alternate interior angles are congruent.

Historic Parallel Postulate: Given a line and a point not on the line, there is exactly one line passing through the point that is parallel to the given line.

Theorem 6.12: Alternate Exterior Angle Theorem: Two lines intersected by a transversal are parallel if and only if the alternate exterior angles are congruent.

Theorem 6.13: Corresponding Angle Theorem:

Two lines intersected by a transversal are parallel if and only if the corresponding angles are congruent.

***<u>Remember</u>: Biconditionals require 2 proofs – one for each conditional.

Example 1: Alternate Exterior Angle Theorem – part 1

If two parallel lines are intersected by a transversal, then the alternate exterior angles are congruent.

Given: $a \parallel b$ and t is a transversal that forms the eight angles shown.

Prove: $\angle 1 \cong \angle 8$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

Solution:

Given: $a \parallel b$ and t is a transversal that forms the eight angles shown.

Prove: $\angle 1 \cong \angle 8$

Statement		Reason
$a \parallel b$ and t is a	1.	Given
transversal		
$\angle 4 \cong \angle 5$	2.	Parallel Postulate
$\angle 1 \cong \angle 4$ and $\angle 8 \cong \angle 5$	3.	Vertical Angle
		Theorem
m∠4=m∠5; m∠1=m∠4;	4.	Def. of congruent
and m $\angle 8 = m \angle 5$		angles
m∠1=m∠8	5.	Substitution or
		transitive (step 4)
$\angle 1 \cong \angle 8$	6.	Def. of congruent
		angles
If two parallel lines are intersected	7.	Law of Deduction
exterior angles are congruent.		
	Statement $a \parallel b$ and t is a transversal $\angle 4 \cong \angle 5$ $\angle 4 \cong \angle 5$ $\angle 1 \cong \angle 4$ and $\angle 8 \cong \angle 5$ $m \angle 4 = m \angle 5; m \angle 1 = m \angle 4;$ and $m \angle 8 = m \angle 5$ $m \angle 1 = m \angle 8$ $\angle 1 \cong \angle 8$ If two parallel lines are intersected by a transversal, then the alternate exterior angles are congruent.	Statement $a \parallel b$ and t is a transversal1. $\angle 4 \cong \angle 5$ 2. $\angle 4 \cong \angle 5$ 2. $\angle 1 \cong \angle 4$ and $\angle 8 \cong \angle 5$ 3. $m \angle 4 = m \angle 5; m \angle 1 = m \angle 4;$ and $m \angle 8 = m \angle 5$ 4. $m \angle 1 = m \angle 8$ 5. $\angle 1 \cong \angle 8$ 6.If two parallel lines are intersected by a transversal, then the alternate exterior angles are congruent.7.

Example 2: Corresponding Angle Theorem – part 1

If a transversal intersects two lines such that the corresponding angles are congruent, then the two lines are parallel.

Given: $\angle 1 \cong \angle 2$

Prove: $a \parallel b$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Example 2: Corresponding Angle Theorem – part 1

If a transversal intersects two lines such that the corresponding angles are congruent, then the two lines are parallel.

Prove: $a \parallel b$

	Statement	Reason
1.	∠1 ≅ ∠2	1. Given
2.	$\angle 2 \cong \angle 3$	2. Vertical angles are equal
3.	$\angle 1 \cong \angle 3$	3. Transitive
4.	a b	4. Parallel Postulate
5.	If a transversal intersects two lines such that the corresponding angles are congruent, then the two lines are parallel.	5. Law of Deduction

Given: $\angle 1 \cong \angle 2$

Theorem 6.14: If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other also.

Theorem 6.15: If two lines are perpendicular to the same line, then they are parallel to each other.

Proof of Theorem 6.15:

Given: $p \perp t$ and $q \perp t$

Prove: $p \parallel q$

Statement	Reason
1. $p \perp t$ and $q \perp t$	1. Given
2. $\angle 1$ and $\angle 2$ are right	2. Perp. lines intersect
angles	to form rt. angles
3. ∠1 ≃ ∠2	3. All right angles are
	congruent (Thm 4.1)
4. <i>p</i> <i>q</i>	4. Corresponding Angle
	Theorem
5. If $p \perp t$ and $q \perp t$, then	5. Law of Deduction
$p \parallel q$	

Theorem 6.15: If two lines are perpendicular to the same line, then they are parallel to each other.

Proof of Theorem 6.15:

Given: $p \perp t$ and $q \perp t$

Prove: $p \parallel q$

Statement	Reason
1. $p \perp t$ and $q \perp t$	1. Given
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.

These triangles are congruent because their corresponding angles and sides are congruent.

Terms:

included angle: $\angle A$ is the included angle between AC and AB.

included side: \overline{DE} is the included side between $\angle D$ and $\angle E$.

Theorem 6.16: The sum of the measures of any triangle is 180°.

Proof: *Given*: ∆ABC

Draw $\triangle ABC$ and then draw a line that passes through C and is parallel to AB. Make the new line dotted to show that it is not a part of the given information

When we add to a drawing it is called an <u>auxiliary figure</u>. These are valid as long as the figure drawn can really exist.

Prove: $m \angle 2 + m \angle 4 + m \angle 5 = 180^{\circ}$.

	Statement		Reason
1.	∆ABC; n ∥ AB through C	1.	Given; auxiliary line
2.	m∠2+m∠3 = m∠ACD	2.	Angle Addition
			Postulate
3.	∠1 and ∠ACD are	3.	Linear pairs are
	supplementary		supplementary
4.	m∠1 + m∠ACD = 180°	4.	Def. of
			supplementary
5.	m∠1+m∠2 +m∠3 = 180°	5.	Substitution (step 2
			into 4)
6.	$\angle 1 \cong \angle 4$	6.	Parallel Postulate
	$\angle 3 \cong \angle 5$		
7.	m∠1 = m∠4	7.	Def. of congruent
	m∠3 = m∠5		angles
8.	m∠2+m∠4+m∠5=180°	8.	Substitution (step 7
			into 5)

Sample Problem:

Find m ${\sc l}1$ and m ${\sc l}2$

Answers:

 $m \angle 2 = 180^{\circ}$ - $72^{\circ} = 108^{\circ}$ since $\angle 2$ and 72° are supplements $m \angle 1 = 180^{\circ}$ - 21° - $108^{\circ} = 51^{\circ}$

Sample Problem:

Find the value of x

Answer: x + 2x + 90 = 1803x + 90 = 1803x = 90x = 30 **Theorem 6.17:** If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

Given: $\angle A \cong \angle X$ and $\angle B \cong \angle Y$ Prove: $\angle C \cong \angle Z$

	Statement		Reason
1.	$\angle A \cong \angle X$ and $\angle B \cong \angle Y$	1.	Given
2.	m∠A+m∠B+m∠C=180	2.	Sum of meas. of
	m∠X+m∠Y+m∠Z=180		angles in Δ =180°
3.	m∠A+m∠B+m∠C=	3.	Transitive
	m∠X+m∠Y+m∠Z		
4.	m∠A=m∠X	4.	Def. of congruent
	m∠B=m∠Y		angles
5.	m∠A+m∠B+m∠C=	5.	Substitution (step 4
	m∠A+m∠B+m∠Z		into 3)
6.	m∠C = m∠Z	6.	Addition Property of
			Equality
7.	$\angle C \cong \angle Z$	7.	Def. of congruent
			angles
8.	If $\angle A \cong \angle X$ and $\angle B \cong \angle Y$,	8.	Law of Deduction
	then $\angle C \cong \angle Z$		

Theorem 6.18: The acute angles of a right triangle are complementary

Divide the polygon into triangles. Since each triangle equals 180°, multiply the number of triangles times 180° for the total measure of all angles.

- 4 sides = 2 Δ 's 6 sides = 4 Δ 's 7 sides = 5 Δ 's
- ***In general, there are *n*-2 triangles formed if a figure has *n* sides.
- ***The total angle measure of a polygon of n sides is 180(n-2).

Interior Angle Measure:

If the polygon is regular, then to find the measure of each angle, take the total angle measure and divide it by the number of angles: 180(n-2)

Example:

6 sides = 4 triangles $4 \cdot 180 = 720$ $720^{\circ} \div 6$ angles = 120°

section 6.5

Up until now we have had to show all corresponding angles and sides are congruent to show that 2 triangles are congruent. We are now going to learn faster methods.

Look at:

The size and shape of $\angle A$ and \overline{AB} and \overline{AC} determine the size and shape of $\triangle ABC$.

*If we draw another angle the same size as ∠A, with segments the same length as AB and AC, the triangles will be congruent.

Postulate 6.2: (SAS Congruence Postulate) If 2 sides and an included angle of one triangle are congruent to the corresponding 2 sides and included angle of another triangle, then the two triangles are congruent.

Look at:

If \overline{AB} is a set length, and $\angle A$ and $\angle B$ are set measures, then there is only one possible triangle.

*If we draw another segment the same length as \overline{AB} , and the angles at the endpoints of the segment the same size as $\angle A$ and $\angle B$, the triangles will be congruent.

Postulate 6.3: (ASA Congruence Postulate) If 2 angles and an included side of one triangle are congruent to the corresponding 2 angles and the included side of another triangle, then the 2 triangles are congruent.

Sample Problems:

Which triangles can be shown congruent by SAS, ASA, or neither?

Rectangle ABCD

ASA, since the vertical angles are equal

neither

neither

Prove: $\overline{AD} \cong \overline{BC}$

Given: $\angle 1 \cong \angle 6$, $\angle 3 \cong \angle 4$

Statement	Reason
$1. \angle 1 \cong \angle 0, \angle 3 \cong \angle 4$	I. Given
2. $DB = DB$	2. Reflexive
3. $\triangle ABD \cong \triangle CDB$	3. ASA
	4. Corresponding parts
4. $\overline{AD} = \overline{BC}$	of congruent
	triangles are
	congruent

Given: $\triangle ABC$ is isosceles with base \overline{AC} $\overline{BC} \cong \overline{AB}$, $\overline{AE} \perp \overline{BC}$, $\overline{CD} \perp \overline{AB}$

Prove: $\triangle CDB \cong \triangle AEB$

Reason

Statement	
1. $\triangle ABC$ is isosceles with	1. Given
<u>bas</u> e <u>AC</u> , <u>BC</u> ≅ <u>AB,</u>	
$AE\perpBC,CD\perpAB$	
2. ∠B ≅ ∠B	2. Reflexive
 ∠AEB and ∠CDB are right angles 	3. Def. of perpendicular
4. ∠AEB ≅ ∠CDB	4. Thm. 4.1 (rt. angles
	are congruent)
5. ∠1 ≃ ∠2	5. Thm. 6.17 (3 rd angles
	are congruent)
6. $\triangle CDB \cong \triangle AEB$	6. ASA