Geometry Week 13 sec. 6.7 – ch. 6 test

section 6.7

Theorem 6.19: SAA Congruence Theorem: If two angles of a triangle and a side opposite one of the two angles are congruent to the corresponding angles and side of another triangle, then the two triangles are congruent.

Proof:

Given: $\angle A \cong \angle X$; $\angle C \cong \angle Z$; $\overline{AB} \cong \overline{XY}$

Prove: $\triangle ABC \cong \triangle XYZ$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Solution:

Proof of Theorem 6.19: SAA Congruence Theorem:

If two angles of a triangle and a side opposite one of the two angles are congruent to the corresponding angles and side of another triangle, then the two triangles are congruent.

Given: $\angle A \cong \angle X$; $\angle C \cong \angle Z$; $\overline{AB} \cong \overline{XY}$

Prove:	$\triangle ABC \cong$	ΔXYZ
--------	-----------------------	--------------

Statement	Reason
1. $\angle A \cong \angle X$; $\angle C \cong \angle Z$; $\overline{AB} \cong \overline{XY}$	1. Given
2. ∠B ≅ ∠Y	2. Third angles are congruent (6.17)
3. $\triangle ABC \cong \triangle XYZ$	3. ASA
4. If $\angle A \cong \angle X$; $\angle C \cong \angle Z$; AB $\cong XY$, then $\triangle ABC \cong \triangle XYZ$	4. Law of Deduction

Example 1:

Given: M is the midpoint of \overline{LN} OM $\perp \overline{LN}$

Prove: $\triangle LMO \cong \triangle NMO$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.
8.	8.

	Statement	Reason
1.	$ \underbrace{ M \text{ is the midpoint of } \overline{LN} ; }_{OM \perp LN } $	1. Given
2.	LM = NM	2. Definition of midpoint
3.	$\overline{LM}\cong\overline{NM}$	 Def. of congruent segments
4.	$\overline{OM}\cong\overline{OM}$	4. Reflexive
5.	∠LMO and ∠NMO are right angles	5. Def. of perpendicular
6.	$\angle LMO \cong \angle NMO$	 All right angles are congruent
7.	$\Delta LMO \cong \Delta NMO$	7. SAS

Example 2:

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

Solution for Example 2:

Given: $\angle A \cong \angle D$ $\angle ABC \cong \angle DCB$ *Prove:* $\overline{AC} \cong \overline{DB}$

Statement	Reason
1. ∠A ≅ ∠D; ∠ABC ≅ ∠DCB	1. Given
2. $\overline{BC} \cong \overline{BC}$	2. Reflexive
3. $\triangle ABC \cong \triangle DCB$	3. SAA
4. $\overline{AC} \cong \overline{DB}$	4. Def. of congruent triangles

Theorem 6.20: Isosceles Triangle Theorem: In an isosceles triangle the two base angles are congruent.

Proof:

Prove: $\angle Y \cong \angle Z$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

Ζ

Solution:

Theorem 6.20: Isosceles Triangle Theorem: In an isosceles triangle the two base angles are congruent.

Statement	Reason
1. $\overline{XY} \cong \overline{XZ}$	1. Given
2. XW bisects ∠X	2. Auxiliary ray
3. ∠YXW ≅ ∠ZXW	3. Def. of angle bisector
4. $\overline{XW} \cong \overline{XW}$	4. Reflexive Property
5. $\Delta XYW \cong \Delta XZW$	5. SAS
6. ∠Y ≅ ∠Z	 Corresponding parts of congruent triangles are congruent.

Example 3:

Prove: $\overline{XY} \cong \overline{XW}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

Solution for Example 3:

Given: ZX bisects ∠WZY and ∠WXY

Prove: $\overline{XY} \cong \overline{XW}$

Statement	Reason
 TX bisects ∠WZY and ∠WXY 	1. Given
2. $\angle WXZ \cong \angle YXZ$ $\angle WZX \cong \angle YZX$	2. Def. of angle bisector
3. $\overline{XZ} \cong \overline{XZ}$	3. Reflexive
4. $\Delta XZW \cong \Delta XZY$	4. ASA
5. $\overline{XY} \cong \overline{XW}$	5. Def. of congruent triangles (CPCTC)

Theorem 6.20: Isosceles Triangle Theorem: In an isosceles triangle the two base angles are congruent.

Theorem 6.21: If two angles of a triangle are congruent, then the sides opposite those angles are congruent, and the triangle is an isosceles triangle.

Theorem 6.22: A triangle is equilateral if and only if it is equiangular.

section 6.5

SSS Congruence Theorem: If each side of one triangle is congruent to the corresponding side of a second triangle, then the two triangles are congruent.

Summary:

Ways you CAN use to prove congruence	Ways you CAN'T use to prove congruence
SAS	SSA
ASA	AAA
SSS	
SAA	

Example 2, page 253

Given: $\overline{\mathsf{ED}} \cong \overline{\mathsf{BC}}, \overline{\mathsf{EC}} \cong \overline{\mathsf{BD}}$

Prove: $\overline{AE} \cong \overline{AB}$

	Statement		Reason
1.	$\overline{ED}\cong\overline{BC},\ \overline{EC}\cong\overline{BD}$	1.	Given
2.	$\overline{DC}\cong\overline{DC}$	2.	Reflexive
3.	$\triangle BCD \cong \triangle EDC$	3.	SSS
4.	$\angle EDC \cong \angle BCD,$ $\angle BDC \cong \angle ECD$	4.	CPCTC
5.	$\angle EDF \cong \angle BCF$	5.	Adjacent Angle Portion Theorem
6.	$\angle A \cong \angle A$	6.	Reflexive
7.	$\triangle ABD \cong \triangle AEC$	7.	SAA
8.	$\overline{AE}\cong\overline{AB}$	8.	CPCTC

Alternate Proof for Example 2, page 253

Given: $\overline{\text{ED}} \cong \overline{\text{BC}}, \overline{\text{EC}} \cong \overline{\text{BD}}$ **Prove**: $\overline{\text{AE}} \cong \overline{\text{AB}}$

	Statement		Reason
1.	$\overline{ED}\cong\overline{BC},\ \overline{EC}\cong\overline{BD}$	1.	Given
2.	$\overline{DC}\cong\overline{DC}$	2.	Reflexive
3.	$\triangle BCD \cong \triangle EDC$	3.	SSS
4.	∠EDC ≅ ∠BCD	4.	CPCTC
5.	$\overline{AD}\cong\overline{AC}$	5.	Thm. 6.21 (conv. of Isos Thm)
6.	AD = AC	6.	Def. of congruent
7.	AD = AE + ED AC = AB + BC	7.	Def. of betweenness
8.	AE + ED = AB + BC	8.	Subst.(step 6 into 7)
9.	ED = BC	9.	Def. of congruent
10.	AE = AB	10.	Add. Prop. (Subtr. Eq.)
11.	$\overline{AE} \cong \overline{AB}$	11.	Def. of Congr. seg.

Vocabulary:

Adjacent Angle Portion Theorem Adjacent Angle Sum Theorem alternate exterior angles alternate interior angles **ASA Congruence Postulate** congruent circles, congruent polygons congruent triangles corresponding angles **Equilateral Triangle Theorem** included angle included side **Isosceles Triangle Theorem** SAA Congruence Theorem SAS Congruence Theorem SSS Congruence Theorem two-column proof transversal