Geometry Week 15 sec. 7.4 – sec. 7.6

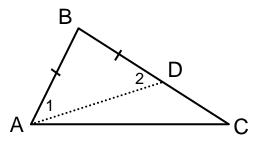
section 7.4

Longer Side Inequality Theorem: One side of a triangle is longer than another side of a triangle if and only if the measure of the angle opposite the longer side is greater than the angle opposite the shorter side.

Proof of Part 1:

Given: $\triangle ABC$, BC>AB **Construct**: AD such that B-D-C and $\overline{AB} \cong \overline{AD}$

Prove: M∠A > m∠C



Statement

Reason

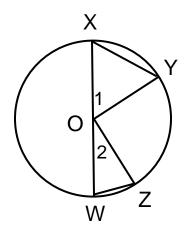
1.	$\triangle ABC; BC > AB; \overline{AB} \cong \overline{AD}$	1.	Given	
2.	ΔABD is an isosceles Δ	2.	Def. of Isosceles Δ	
3.	$\angle 1 \cong \angle 2$	3.	Isosceles Δ Thm.	
4.	m∠1 = m∠2	4.	Def. of congr. angle	
5.	m∠CAD+m∠1=m∠CAB	5.	Angle Add. Post.	
6.	m∠CAB > m∠1	6.	Def. of greater than	
7.	m∠CAB > m∠2	7.	Substitution	
8.	m∠2 > m∠C	8.	Exterior ∠ Ineq.	
9.	m∠CAB > m∠C	9.	Trans. prop of ineq.	
10.	If one side of a Δ is longer than another side of a Δ , then the measure of the \angle opposite the longer side is greater than the \angle opposite the shorter side.	10.	10. Law of Deduction	

Hinge Theorem: Two triangles have 2 pairs of congruent sides. If the measure of the included angle of the first triangle is larger than the measure of the other included angle, then the opposite (3^{rd}) side of the first triangle is longer than the opposite (3^{rd}) side of the 2^{nd} triangle.

Sample Problem:

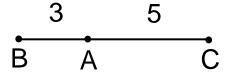
Given: Circle O with $m \angle 1 > m \angle 2$

Prove: XY > WZ



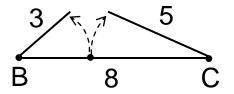
	Statement		Reason
1.	Circle O with	1.	Given
	m∠1 > m∠2		
2.	$\overline{OX} \cong \overline{OW}$	2.	All radii of a circle
	$\overline{OZ}\cong\overline{OY}$		are congruent
3.	XY > WZ	3.	Hinge Theorem

Look at:

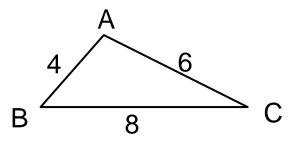


If BC = 8, then we must have B-A-C, and B, A, and C must be collinear.

If we try to make a triangle from these given lengths, we cannot.



What if BA and AC are larger, so that BA + AC > BC?

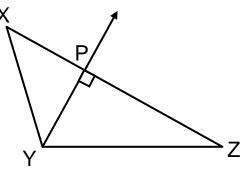


We will get a triangle as long as the sum of the lengths of 2 sides is greater than the length of the third side.

Triangle Inequality Theorem (7.14): The sum of the lengths of any 2 sides of a triangle is greater than the length of the third side.

Proof:

<i>Given</i> : ∆XYZ with no <u>si</u> de				
	longer than \overline{XZ}			
Auxilliary line: $\overrightarrow{PY} \perp \overrightarrow{XZ}$ at P				
	XZ+YZ >XY			
	XZ+XY > YZ			
	XY+YZ > XZ			



Trichotomy guarantees that you can list the 3 sides of a triangle in order of length from shortest to longest. Label side XZ so that there is no longer side. Since $XZ \ge XY$, it follows that XZ+XY > YZ (distance YZ>0). Similarly, $XZ \ge YZ$, ao XZ+XY > YZ. These 2 inequalities were easy to prove, but the third is harder and requires the altitude from Y to XZ as an auxiliary line.

	Statement		Reason
1.	ΔXYZ with \overline{XZ} the	1.	Given
	longest side, altitude \overline{YP}		
2.	$\overline{YP} \perp \overline{XZ}$	2.	Def.of altitude
3.	\angle XPY & \angle ZPY are rt \angle 's	3.	Def. of \perp
4.	$\Delta XPY \& \Delta ZPY$ are rt Δ 's	4.	Def. of right Δ 's
5.	XY > XP, YZ > PZ	5.	Hypot. is longest
6.	XY+YZ > XP + PZ	6.	Add. of Inequalities
7.	XP + PZ = XZ	7.	Def. of between
8.	XY+YZ > XZ	8.	Sub. (step 7 into 6)

Sample Problem:

1. Can a triangle be constructed with lengths 5, 8,13?

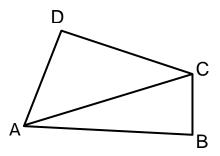
no, 5+8 is not greater than 13

2. Given sides 4 and 7, what is the range of possible values for the 3rd side?

(4+7) must be greater than the 3rd side
(3rd side + 4) and be greater than 7
So, the 3rd side must be between 3 and 11

3. Given: Quadrilateral ABCD

Prove: AD+DC+BC > AB

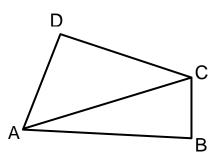


Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

3. Solution:

Given: Quadrilateral ABCD

Prove: AD+DC+BC > AB



	Statement		Reason
1.	Quadrilateral ABCD	1.	Given
2.	AD+DC > AC AC+BC > AB	2.	Triangle inequality theorem
3.	AD+DC+ AC+BC>AC+AB	3.	Addition of ineq.
4.	AD+DC+BC>AB	4.	Add. prop. of ineq.

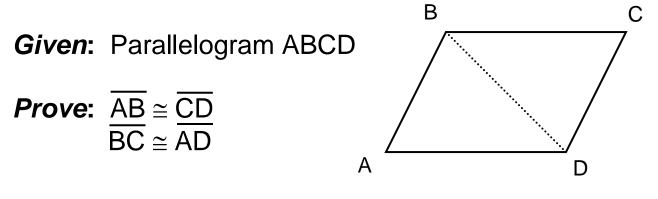
section 7.6

Definition:

A <u>parallelogram</u> is a quadrilateral in which both pairs of opposite sides are parallel.

Theorem 7.15: The opposite sides of a parallelogram are congruent.

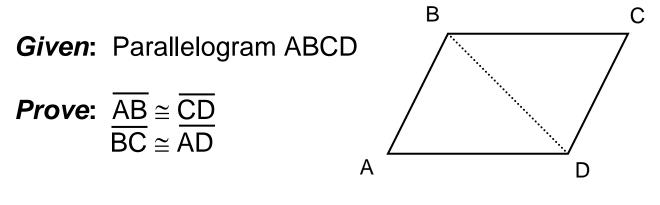
Proof:



Statement	Reason
1. ABCD is a parallelogram	1. Given
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.
8.	8.

Theorem 7.15: The opposite sides of a parallelogram are congruent.

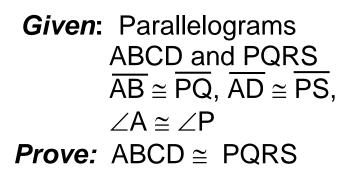
Proof:

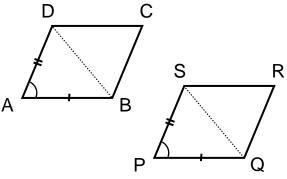


Statement	Reason
1. ABCD is a parallelogram	1. Given
2. $\overrightarrow{AB} \parallel \overrightarrow{CD}, \overrightarrow{BC} \parallel \overrightarrow{AD}$	2. Def. of parallelogram
3. Draw BD	3. Line Postulate
4. $\angle ABD \cong \angle CDB$ $\angle CBD \cong \angle ADB$	4. Parallel Postulate
5. $\overline{BD} \cong \overline{BD}$	5. Reflexive
6. $\triangle ABD \cong \triangle CBD$	6. ASA
7. $\overline{AB} \cong \overline{CD}, \ \overline{BC} \cong \overline{AD}$	7. Def. of congr. Δ 's

Thm. 7.16: SAS Congruence for Parallelograms:

If two sides and the included angle of a parallelogram are congruent to the corresponding two sides and included angle of another parallelogram, then the parallelograms are congruent.

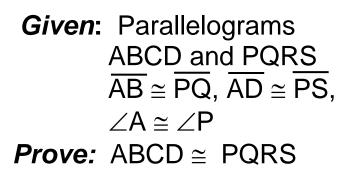


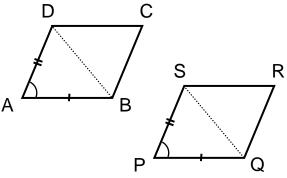


Statement	Reason
1. Parallelograms ABCD and PQRS, AB \cong PQ, AD \cong PS, $\angle A \cong \angle P$	1. Given
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.
8.	8.
9.	9.

Thm. 7.16: SAS Congruence for Parallelograms:

If two sides and the included angle of a parallelogram are congruent to the corresponding two sides and included angle of another parallelogram, then the parallelograms are congruent.





	Statement	Reason	
1.	Parallelograms ABCD and PQRS, AB \cong PQ, AD \cong PS, $\angle A \cong \angle P$	1. Given	
2.	Draw BD and QS	2. Auxiliary lines	
3.	$\triangle ABD \cong \triangle PQS$	3. SAS	
4.	$\overline{BD}\cong\overline{QS}$	4. Def. of congr.	Δ
5.	$\overline{\underline{AB}} \cong \overline{\underline{CD}}, \ \overline{\underline{PQ}} \cong \overline{\underline{RS}}, \\ \overline{AD} \cong \overline{BC}, \ \overline{PS} \cong \overline{QR}$	5. Opp. sides of a parallelogram	
6.	$\overline{BC}\cong\overline{QR},\ \overline{CD}\cong\overline{RS}$	6. Transitive of co	ongr.
7.	$\triangle BCD \cong \triangle QRS$	7. SSS	
8.	$ABCD \cong PQRS$	8. Subdivision int corres. congr.	_

Theorem 7.17: A quadrilateral is a parallelogram if and only if the diagonals bisect one another.

Theorem 7.18: Diagonals of a rectangle are congruent.

Theorem 7.19: The sum of the measures of the 4 angles of every convex quadrilateral is 360°

Theorem 7.20: Opposite angles of a parallelogram are congruent.

Theorem 7.21: Consecutive angles of a parallelogram are supplementary.

Theorem 7.22: If the opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram

Theorem 7.23: A quadrilateral with one pair of parallel sides that are congruent is a parallelogram.