Geometry Week 16 sec. 7.7 to 8.2

section 7.7

Construction 3: Bisect a Segment

Given: Line *n* containing point X.

- Place the point of the compass on X and make intersecting arcs on line n on each side of X. Label these points A and B.
- 1. Place the point of the compass at A and then at B, making intersecting arcs above and below the line segment.
- 2. Connect the two intersecting points to form the line perpendicular to line n at the point B. (The line will also be the bisector of \overline{AB} .)
- **To prove the construction, we must show that the angle formed through our construction is a right angle.

Justification:

Show that $\angle PXA$ is a right angle, and thus the lines are perpendicular ($PX \perp AB$)

	Statement		Reason
1.	AB contains point X	1.	Given
2.	$\overline{PA} \cong \overline{PB}, \ \overline{AX} \cong \overline{BX}$	2.	
3.	$\overline{PX} \cong \overline{PX}$	3.	
4.	$\Delta PAX \cong \Delta PBX$	4.	
5.	$\angle PXA \cong \angle PXB$	5.	
6.	∠PXA & ∠PXB form a linear pair	6.	
7.	∠PXA & ∠PXB are supplementary	7.	
8.	∠PXA is right angle	8.	
9.	$\overrightarrow{PX} \perp \overrightarrow{AB}$	9.	

Solution:

Justification:

Show that $\angle PXA$ is a right angle, and thus the lines are perpendicular ($PX \perp AB$)

	Statement		Reason
1.	AB contains point X	1.	Given
2.	$\overline{PA} \cong \overline{PB}, \ \overline{AX} \cong \overline{BX}$	2.	Radii of \cong circles \cong
3.	$\overline{PX}\cong\overline{PX}$	3.	Reflexive
4.	$\Delta PAX \cong \Delta PBX$	4.	SSS
5.	$\angle PAX \cong \angle PBX$	5.	Def. of $\cong \Delta$'s
6.	∠PXA & ∠PXB form a linear pair	6.	Def. of linear pair
7.	∠PXA & ∠PXB are supplementary	7.	\angle 's that form a linear pair are supp. (4.3)
8.	∠PXA is right angle	8.	Congruent supplementary ∠'s are right angles (4.6)
9.	$\overrightarrow{PX} \perp \overrightarrow{AB}$	9.	Def. of perpendicular

Construction 9: Copy a triangle.

Given: $\triangle ABC$ **Construct:** A triangle congruent to $\triangle ABC$

- Draw a line. Choose a point on the line and call it A'.
- Using a compass, measure length AB. Place the point of the compass at A' and mark off a segment congruent to AB on the line Call the point B'.
- 3. Using measure AC and using A' as center, construct an arc above A'B'.
- 4. Repeat step 3, using measure BC with B' as center.
- 5. The arcs intersect at a point. Call it C'. Connect C' with A' and B' to form a triangle congruent to the original triangle.

Construction 10: Copy a polygon.

Given: A polygon

Construct: A polygon congruent to the given polygon

- 1. Subdivide the given polygon into triangles.
- 2. Copy one of the triangles (construction 9).
- 3. Copy adjacent triangles until the polygon is complete.

Construction 11: Construct a line parallel to a given line through a point not on the line.

Given: Line k and point A not on line k.Construct: A line containing the point A that is parallel to line k.

- 1. Draw a line that goes through point A and intersect the given line at point B.
- Construct an angle, ∠BAE, congruent to ∠ABC, so that E and C are in opposite half-planes (construction 4).
- 3. The two angles will be congruent alternate interior angles, thus AE is parallel to K by the Parallel Postulate.

Chapter 7 Vocabulary:

altitude centroid circumcenter concurrent lines exterior angle of a triangle HACongruence Theorem Hinge Theorem HL Congruence Theorem

incenter LA Congruence Theorem LL Congruence Theorem longer side inequality median of a triangle orthocenter remote interior angle triangle inequality

section 8.1

Definition:

The <u>area of a region</u> is the number of square units needed to cover it completely.

***Note**: We find the area of regions, not the polygon itself. A polygonal region is the union of the polygon and its interior.

<u>Linear measure</u> is <u>one-dimensional</u> <u>Area measure</u> is <u>two-dimensional</u>

Example:

Area = 34 square units

<u>Area Postulate (8.1)</u>: Every region has an area given by a unique positive real number.

(An area can't have 2 different areas)

Congruent Regions Postulate (8.2): Congruent regions have the same area.

<u>Area of Square Postulate (8.3)</u>: The area of a square is the square of the length of one side: $A = s^2$

<u>Area Addition Postulate (8.4):</u> If the interior of 2 regions do not intersect, then the area of the union is the sum of their areas.

<u>Theorem 8.1</u>: The <u>area of a rectangle</u> is the product of its base and height: A = bh

Sample Problems:

1. Find the area of a rectangle that measures 6' x 12'

$$A = bh = 6(12) = 72 \text{ sq. ft.}$$

2. Find the area of a square with side 5 mm.

$$A = s^2 = 5^2 = 25 \text{ mm}^2$$

3. Find the area of the following region.

Area = (9x5)+(3x2)+(9x2)Area = 45 + 6 + 18 Area = 69 sq. units 4. Find the area of the following region:

Answer:

Area =
$$2(4x4)$$

+ $2(2x4)$
+ $1(4x11)$

Area = 32+16+44

5. A rectangle has a base of 16 feet and an area of 128 square feet. What is the height of the rectangle?

A = bh

$$128 = 16h$$

16 16
h = 8 ft.

section 8.2

<u>Theorem 8.2</u>: The <u>area of a right triangle</u> is one-half of the product of the lengths of the legs: $A = \frac{1}{2}bh$

Theorem 8.3: The area of a parallelogram is the product of the base and the altitude: A = bh

Note: The <u>altitude</u> is a perpendicular line from the base to the opposite side.

Given: Parallelogram ABCD *Draw:* Altitudes DE and FB *Prove:* A = bh

	Statement		Reason
1.	Parallelogram ABCD	1.	Given
2.	$\overline{BC}\cong\overline{AD}$	2.	Opposite sides \cong
3.	$\angle A \cong \angle C$	3.	Opposite angles \cong
4.	$\overrightarrow{DE} \perp \overrightarrow{AB}; \overrightarrow{BF} \perp \overrightarrow{CD}$	4.	Def. of altitudes
5.	∠AED and ∠CFB are right angles	5.	Def. of perpendicular
6.	$\triangle ADE \cong \triangle CBF$	6.	HA (or SSS)
7.	Area $\triangle ADE = \frac{1}{2}(AE)h$	7.	Area rt. Δ Thm.
8.	Area $\triangle CBF = \frac{1}{2}(AE)h$	8.	Congr. Regions Post.
9.	Area BEDF = (BE)h	9.	Area of Rect. Thm.
10.	Area ABCD = Area \triangle ADE + Area \triangle CBF + Area BEDF	10.	Area Add. Post.
11.	Area ABCD = $\frac{1}{2}(AE)h$ + $\frac{1}{2}(AE)h$ + (BE)h	11.	Substitution (steps 7,8,9 into 10)
12.	Area ABCD=(AE+BE)h	12.	Distributive Prop.
13.	AE + BE = AB = b	13.	Def. of betweenness
14.	Area ABCD = bh	14.	Subst. (step 13 into 12)

<u>Theorem 8.4</u>: The <u>area of a triangle</u> is one-half of the base times the height: $A = \frac{1}{2}bh$

<u>Theorem 8.5</u>: The <u>area of a trapezoid</u> is one-half the product of the altitude and the sum of the lengths of the bases: $A = \frac{1}{2}(b_1 + b_2)$

Area of the parallelogram = $(b_1 + b_2)h$

Area of Trapezoid is $\frac{1}{2}$ of the area of the parallelogram Area of the trapezoid = $1/2(b_1 + b_2)h$

****Note:** Since rectangles, parallelograms, rhombi, and squares are all trapezoids, the formula for the area of a trapezoid should work with all of these regions, too.

<u>Theorem 8.6</u>: The <u>area of a rhombus</u> is one-half of the product of the lengths of the diagonals: $A = \frac{1}{2} d_1 d_2$

A = bh

 $A = \frac{1}{2} d_1 d_2$

Summary of Area

Figure	Formula
rectangle	A = bh
square	$A = s^2$
triangle	A = ½ bh
parallelogram	A = bh
trapezoid	$A = \frac{1}{2}(b_1 + b_2)h$
rhombus	A = bh or A = $\frac{1}{2} d_1 d_2$

Sample Problems: Find the areas.

1.

A = $\frac{1}{2}$ (6+8)(4) = $\frac{1}{2}$ (14)(4) = 28 cm₂

 $A = bh = 12(4) = 48 m_2$

3.

A = $\frac{1}{2} d_1 d_2 = \frac{1}{2}(16)(12) = 8(12) = 96$ sq. units

4. The bases of a trapezoid are 2 and 4 feet longer than the height respectively. If the area is 54 sq. feet, find the height.

Area =
$$\frac{1}{2}([h+2] + [h+4])h$$

Area = $\frac{1}{2}(2h + 6)h$
Area = $\frac{1}{2}h(2h + 6)$
Area = $h^2 + 3h$

• Since Area = 54, we have

$$54 = h^{2} + 3h$$

 $h^{2} + 3h - 54 = 0$
 $(h+9)(h-6) = 0$
 $h+9 = 0 \text{ or } h-6 = 0$
 $h = -9 \text{ or } h = 6$

• Since distance can't be negative,

height = 6 feet