Geometry Week 18 sec. 8.6 to ch. 8 test

section 8.6

Review:

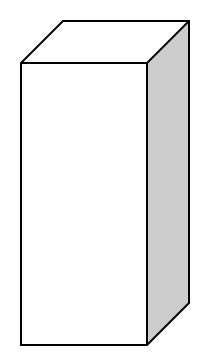
<u>area</u> – the number of squares needed to cover a region

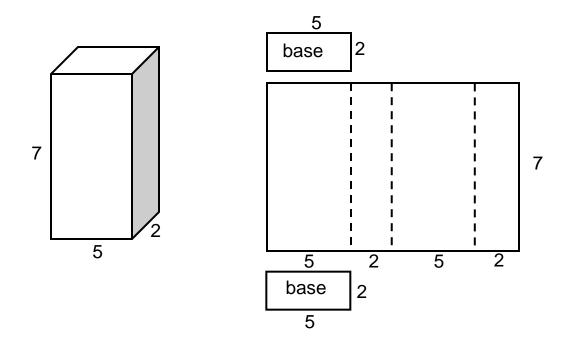
surface area – the number of squares needed to cover the outer shell of a sold in space

surface – the boundary of a 3-dimensional figure

Prism Terminology:

bases lateral faces height of a prism right prism lateral surface area





Lateral area = (14)(7) = 98Area of base = (5)(2) = 10Surface area = 98 + 2(10) = 118

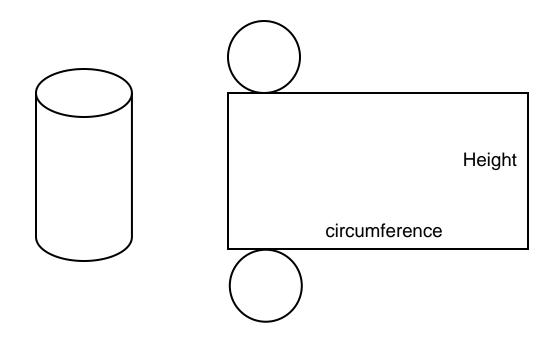
<u>Theorem 8.14</u>: The <u>surface area of a prism</u> is the sum of the lateral surface area and the area of the bases:

S = L + 2B

The <u>lateral surface area of a right prism</u> is the product of its height and the perimeter of its base:

$$L = pH$$

Special Cases: cubes $(S = 6s^2)$ regular prism – right prism w/regular polygon as its base

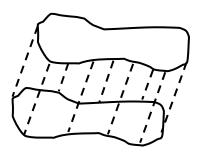


L = pHL = cH (the perimeter of the base is the circumference)

<u>**Theorem 8.15**</u>: The surface area of a cylinder is the sum of the lateral surface area and the area of the bases: S = L + 2B

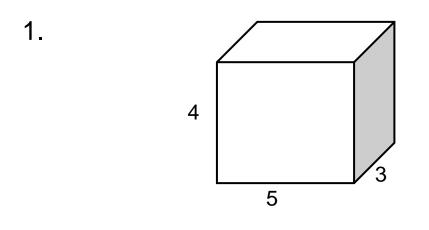
The <u>lateral surface area of a right cylinder</u> is the product of its circumference and height: L = cH

Sample Problem: The base of the following diagram has perimeter of 23 m and area of 20 sq. m. If the height is 11m, find the surface area.

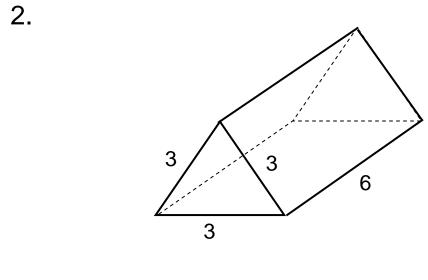


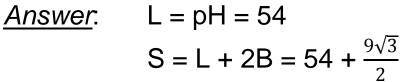
<u>Answer</u>: S = L + 2BS = pH + 2BS = 293 sq. meters

Sample Problems: Find the lateral and total surface area of the following solid figures.

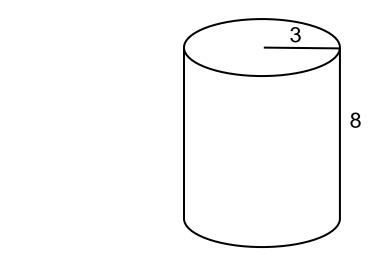


<u>Answer</u>: L = pH = (16)(4) = 64S = L + 2B = 64 + 30 = 94





3.



<u>Answer</u>: $L = cH = 48\pi$ $S = L + 2B = 66\pi$ **Sample Problem:** A right cylinder has the same height as diameter. If the total surface area is 96π sq. inches, what is the size of the cylinder?



<u>Answer</u>: Let x = height and diameter

$$S = L + 2B$$

$$96\pi = cH + 2B$$

$$96\pi = \pi dH + 2(\pi r^{2})$$

$$96\pi = \pi xx + 2\pi \left(\frac{x}{2}\right)^{2}$$

$$96\pi = \pi x^{2} + \frac{\pi x^{2}}{2}$$

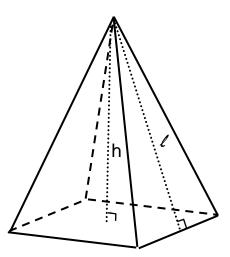
$$192\pi = 2\pi x^{2} + \pi x^{2}$$

$$192\pi = 3\pi x^{2}$$

$$x = 8$$

Terminology for Pyramids

base lateral faces vertex altitude lateral edges



Surface Area = Lateral surface area + base area

S = L + B

Definition: A <u>regular pyramid</u> is a right pyramid that has a regular polygon as its base.

- ***For a regular pyramid, all of the lateral faces are congruent, isosceles triangles.
- **The lateral surface area of a regular pyramid is ½ of the perimeter times the slant height.

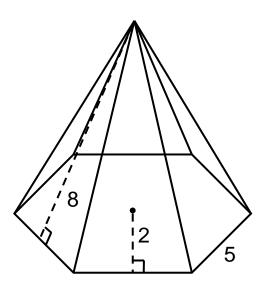
$$L=\frac{1}{2}\,p\ell$$

<u>**Theorem 8.16**</u>: The surface area of a pyramid is the sum of the lateral surface area and the area of the base: S = L + B

We know:	L = ½ pℓ B = ½ pa
So,	S = L + B S = ½ pℓ + ½ pa
<u>or</u> :	$S = \frac{1}{2} p(\ell + a)$

Example:

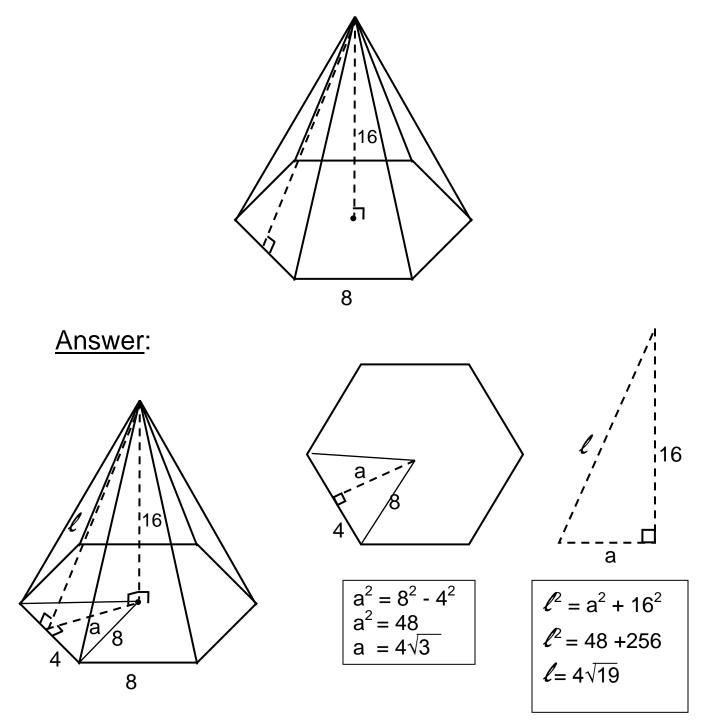
Find the surface area:



Answer:
$$S = \frac{1}{2} p(\ell + a)$$

 $S = \frac{1}{2} (30)(8+2) = 15(10) = 150 \text{ sq. units}$

Sample Problem: Find the lateral and surface area.



L = $\frac{1}{2} p \ell$ B = $6(\frac{\sqrt{3}}{4})s^2$ S = L+B L = $\frac{1}{2}(48)(4\sqrt{19}+)$ B = $6(\frac{\sqrt{3}}{4})(64)$ S = $96\sqrt{19}+96\sqrt{3}$ L = $96\sqrt{19}+)$ B = $96\sqrt{3}$

Circular Cones

****Remember that a pyramid is actually a cone. As the number of sides gets larger, it looks more and more like a circular cone. The perimeter approaches the circumference, and the surface area approaches that of the pyramid.

Pyramid→	L = ½ pℓ	B = ½ ap	$S = \frac{1}{2} p\ell + \frac{1}{2}ap$
Cone→	$L = \frac{1}{2} C\ell$	B = ½ rc	$S = \frac{1}{2} C \ell + \frac{1}{2} rC$

Theorem 8.17: The surface area of a cone is the sum of the lateral surface area and the area of the base:

S = L + B

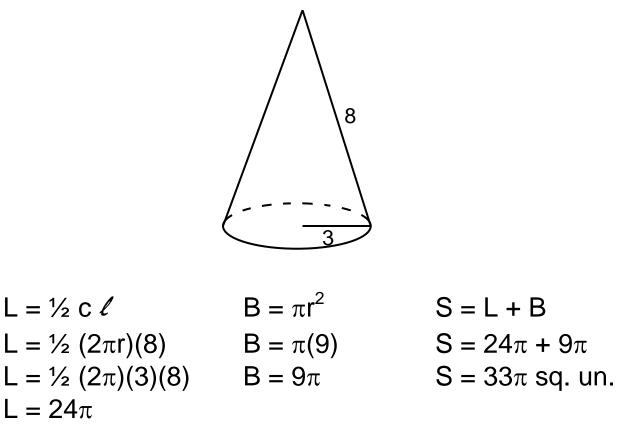
The <u>lateral surface area of a circular cone</u> is half the product of the circumference and slant height:

$$L = \frac{1}{2} C\ell$$

Summary

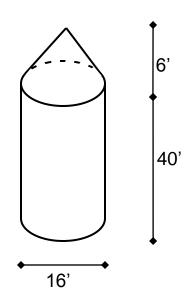
	Pyramid	Cone
Area of base	B = ½ ap	$B = \frac{1}{2} rc$
		$B = \pi r^2$
Lateral area	$L = \frac{1}{2} p \ell$	$L = \frac{1}{2} C \ell \text{ or } \pi r \ell$
		$L = \pi r \ell$
Surface area	S = L + B	S = L + B
	S = ½ p ℓ+½ap	$S = \frac{1}{2} C\ell + \frac{1}{2}rC$
	S = ½ p(ℓ+a)	$S = \frac{1}{2} C(\ell + r)$
		$S = \pi r \ell + \pi r^2$

Example: Find the surface area.



Sample Problems:

1. Find the surface area of a silo with a conical top as shown in the diagram.



<u>Answer</u>.

We need to find the slant height:

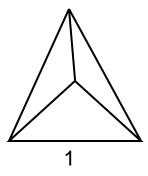
$$\ell^2 = 6^2 + 8^2$$

 $\ell^2 = 36 + 64$
 $\ell^2 = 100$
 $\ell = 10$

Lateral area of cone = $\pi r \ell = \pi(8)(10) = 80\pi$ Lateral area of cylinder = cH = $\pi dH = \pi(16)(40) = 640\pi$

Surface area = $640\pi + 80\pi = 720\pi$ square feet

2. Find the total surface area of a regular tetrahedron with the length of the edge 1 meter.



<u>Answer</u>: Area of each triangle = $\frac{\sqrt{3}}{4}s^2 = \frac{\sqrt{3}}{4}$

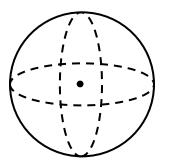
4 triangles, so S =
$$4 \cdot \frac{\sqrt{3}}{4} = \sqrt{3}$$

section 8.8

<u>Definition</u>: A <u>sphere</u> is the set of all points in space equidistant from a given point.

Sphere Terminology:

center radius great circle – a plane through center that intersects the sphere lunes – when great circles separate a sphere into segments



All 4 lunes created by the great circles are of equal size and are each $\frac{1}{4}$ of the sphere. The surface area of one of these lunes is πr^2 . This makes the surface area of the entire sphere = $4\pi r^2$.

<u>**Theorem 8.18**</u>: The surface area of a sphere is 4π times the square of the radius: $S = 4\pi r^2$.

<u>Example</u>: Find the surface area of a sphere with radius = 3.

$$S = 4\pi r^2 = 4\pi (3)^2 = 4\pi (9) = 36\pi$$

<u>Definition</u>: A <u>regular polyhedron</u> is a polyhedron with faces bounded by congruent regular polygons and with the same number of faces intersecting at each vertex.

<u>**Historical Note</u>**: The 5 regular polyhedra pictured on page 356 are the only possible regular polyhedra. They are called Platonic solids because they were discovered by Plato as the only regular polyhedra possible.</u>

<u>Theorem 8.19</u>: The surface area of a regular polyhedron is the product of the number of faces and the area of one face: S = nA.

Sample Problems:

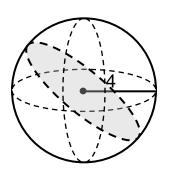
1. Find the surface area of a sphere whose diameter is 16 meters.

Answer:
$$S = 4\pi r^2 = 4\pi (8^2) = 256\pi$$

2. Find the surface area of a sphere whose circumference is 60π units.

$c = 60\pi$	$S = 4\pi r^2$
$2\pi r = 60\pi$	$S = 4\pi (30^2)$
r = 30	$S = 4\pi(900)$
	$S = 3600\pi$

3. Find the surface area of a lune with a central angle of 45° on a sphere of radius 4 inches.



The 2 perpendicular lunes have an angle of 90° and a surface area of $\pi r^2 = 16\pi$. Our lune splits the 90° in half, so the surface area would be $\frac{1}{2}$ of 16π , which is 8π .

4. What is the surface area of a regular octahedron with edge 5 mm. Each face is an equilateral triangle.

8 faces \rightarrow each \triangle has area = $(\sqrt{3/4})s^2 = 25(\sqrt{3/4})$

$$S = 8 C 25(\sqrt{3}/4) = 50\sqrt{3}$$

Chapter 8 Review

Terms:

- altitude (cone, pyramid)
- apothem of a regular polygon
- Area Addition Postulate
- area of a region
- Area of a Square Postulate
- Area Postulate
- center of a regular polygon
- central angle of a regular polygon

- Congruent Regions Postulate
- great circle
- lateral surface area
- lune
- Platonic solid
- Pythagorean Theorem
- radius (circle, regular polygon, sphere)
- regular (polygon, polyhedron, prism, pyramid)
- slant height
- surface area