Geometry Week 19 Sec 9.1 to 9.3

section 9.1

Definitions:

<u>circle</u> – the set of all points that are given distance from a given point in a given plane

Notation: \bigcirc B

<u>center</u> – the given point in the plane

radius of a circle – a segment that connects a point on the circle with the center (pl. radii)

chord of a circle – a segment having both endpoints on the circle

diameter – a chord that passes through the center of a circle

<u>arc</u> – a curve that is a subset of a circle

center: B

 $\underline{radii}: \overline{BE}, \overline{BD}, \overline{BF}$ $\underline{chords}: \overline{FD}, \overline{AC}$ $\underline{diameter}: \overline{FD}$ $\underline{arc}: \widehat{ED}, \widehat{DC}, \widehat{FC}, etc.$

Definitions:

- interior of a circle the set of all planar points whose distance from the center of the circle is less than the length of the radius
- <u>exterior of a circle</u> the set of all planar points whose distance from the center is greater than the length of the radius

Note: The radius, diameter, and chord are segments associated with circles but they are not part of the circle. they may have endpoints on the circle and thus share a point or two, but are not part of the cir le. The center is alos not part of the circle.

Note: When we refer to the area of a circle, we are referring to the area of the circular region. The circle itself is a curve and has no area.

*By definition of a circle, we know <u>all radii of a circle</u> <u>are congruent</u>.

Definition: Congruent circles are circles whose radii are congruent.

<u>Chord Postulate</u> (9.1): If a line intersects the interior of a circle, then it contains a chord of the circle.

Theorem 9.1: In a circle, if a radius is perpendicular to a chord of a circle, then it bisects the chord.

Proof of Thm. 9.1:

Statement

Reason

1.	Circle O with radius \overline{OC} with chord AB, $OC \perp AB$	1.	Given
2.	Draw radii \overline{OA} and \overline{OB}	2.	Auxilliary lines
3.	∠ODA & ∠ODB are rt. angles	3.	Def. of perp. lines
4.	Δ ODA & Δ ODB are rt. Δ 's	4.	Def. of rt. Δ 's
5.	$\overline{OA}\cong\overline{OB}$	5.	Radii of a circle ≅
6.	$\overline{OD}\cong\overline{OD}$	6.	Reflexive
7.	$\triangle ODA \cong \triangle ODB$	7.	HL
8.	$\overline{AD}\cong\overline{BD}$	8.	Def. of $\cong \Delta$'s
9.	AD = BD	9.	Def of \cong segments
10.	D is midpoint of \overline{AB}	10.	Def. of midpoint
11.	OC bisects AB	11.	Def. of seg. bisector
12.	If $\overline{OC} \perp \overline{AB}$, then \overline{OC} bisects AB	12.	Law of Deduction

Theorem 9.2: In a circle or in congruent circles, if two chords are the same distance from the center(s), the chords are congruent.

Given:	$ \bigcirc A \cong \bigcirc B, AX = BY AZ \perp QR, BU \perp PN $
Prove :	$\overline{QR}\cong\overline{PN}$

Statement

Reason

1.	$\bigcirc A \cong \bigcirc B, \overrightarrow{AZ} \perp \overrightarrow{QR}, \overrightarrow{BU} \perp \overrightarrow{PN}, AX = BY$	1.	Given
2.	$\overline{AX}\cong\overline{BY}$	2.	Def. of \cong segments
3.	Draw AQ and BP	3.	Line Postulate
4.	$\overline{AQ} \cong \overline{BP}$	4.	Def. of \cong circles
5.	$\angle AXQ \& \angle BYP \text{ are rt } \angle$'s	5.	Def. of perpendicular
6.	$\triangle AXQ \& \triangle BYP are rt \Delta's$	6.	Def. of rt. Δ
7.	$\triangle AQX \cong \triangle BPY$	7.	HL
8.	$\overline{QX} \cong \overline{PY}$	8.	Def. of $\cong \Delta$'s
9.	QX = PY	9.	def. of \cong segments
10.	AZ bisects QR, BU bisects PN	10.	Radius \perp a chord bisects it
11.	X midpt of \overline{QR} , Y is midpt of \overline{PN}	11.	Def. of seg. bisector
12.	$QX = \frac{1}{2} QR, PY = \frac{1}{2} PN$	12.	Midpoint Theorem
13.	1⁄2 QR = 1⁄2 PN	13.	Substitution (10 into 7)
14.	QR = PN	14.	Mult Prop. of eq.
15.	$\overline{QR}\cong\overline{PN}$	15.	Def. of \cong segments
16.	If $\bigcirc A \cong \bigcirc B$, $\overrightarrow{AZ} \perp \overrightarrow{QR}$, $\overrightarrow{BU} \perp \overrightarrow{PN}$, AX = BY, then $\overrightarrow{QR} \cong \overrightarrow{PN}$	16.	Law of Deduction

Sample Problem: Given circle M with radius 6 and circle N with radius 4 as shown in the diagram.

1. If BC = 1, find CN.

BN = 4 (radius), so CN = BN-BC = 4 - 1 = 3

2. If BC = 1, then find the perimeter of \triangle MNF.

MF=6, *FN*=4 (*radii*) and *MN* = 6+4-1=9 *Perimeter* = 6+4+9 = 19

3. If BC = 2, then find AD.

AD = 12 + 8 - 2 = 18

4. If BC = 2, then find AB.

Sample Problem: Given $\bigcirc M \cong \bigcirc N$, DM = HN, AD = 5x + 4 units, GE = 18 units. Find x.

AC and GE are bisected by the radius (Thm 9.1) They are also equidistant from their centers, and so must be congruent (Thm 9.2).

AC = GE = 18 and AD =
$$\frac{1}{2}$$
 (18)= 9
5x + 4 = 9
5x = 5
x = 1

<u>Theorem 9.3</u>: In a circle or in congruent circles, if two chords are congruent, then they are the same distance from the center(s).

Sample Problem: Prove that if the center of a circle is equidistant from the sides of an inscribed triangle, then the triangle is equilateral.

Given: Center K is equidistant from the sides of inscribed $\triangle ABC$

Prove: ∆ABC is equilateral

Statement	Reason
 Center K is equidis from the sides of inscribed ∆ABC 	tant 1. Given
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

Solution:

- **Given:** Center K is equidistant from the sides of inscribed $\triangle ABC$
- *Prove*: ∆ABC is equilateral

Statement

Reason

1.	Center K is equidistant from the sides of inscribed $\triangle ABC$	1. Given
2.	KF = KE = KD	2. Def. of equidistant
3.	<u>AB</u> ≅ <u>BC</u> , <u>BC</u> ≅AC, AB≅AC	 2 chords equidistant from center are ≅
4.	∆ABC is equilateral	4. Def. of equilateral
5.	If the center of a circle is equidistant from the sides of an inscribed Δ , the Δ is equilateral	5. Law of Deduction

Section 9.2

MN is a secant FG is a tangent F is the point of tangency

Definitions:

<u>secant</u> – a line that is in the same plane as the circle and intersects the circle in exactly two points.

<u>tangent</u> – a line that is in the same plane as the circle that intersects a circle in exactly one point.

point of tangency – the point at which the tangent intersects the circle

<u>Theorem 9.4</u>: If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.

Indirect Proof:

Given: \overrightarrow{AB} is a tangent to circle O at point A **Prove**: $\overrightarrow{OA} \perp \overrightarrow{AB}$

Suppose that \overrightarrow{OA} is not perpendicular to \overrightarrow{AB} . Then there must be some other \overrightarrow{OX} that is perpendicular to \overrightarrow{AB} (where x \overrightarrow{OAB}). Since we know that the shortest distance from a point to a line is the perpendicular distance, then $\overrightarrow{OX} < \overrightarrow{OA}$. This implies that X is in the interior of circle O, thus making \overrightarrow{AB} a secant, which intersects a circle in two points. But this is a contradiction of the given information that \overrightarrow{AB} is a tangent. Thus the assumption that \overrightarrow{OA} is not perpendicular to \overrightarrow{AB} must be false. Hence $\overrightarrow{OA} \perp \overrightarrow{AB}$.

Main Steps in an Indirect Proof:

- 1. Assume the opposite of what you are trying to prove.
- 2. Reason deductively from the assumption.
- 3. Reason to a conclusion that contradicts the assumption, the given, or some theorem.
- 4. Conclude that the assumption is false and therefore the statement you are trying to prove is true.

Law of Contradiction (Theorem 9.5): If an assumption leads to a contradiction, then the assumption is false and its negation is true.

<u>Two-column proof of Theorem 9.4 using the Law</u> of Contradiction

Statement			Reason		
1.	AB is tangent to circle O at point A	1.	Given		
2.	AB intersects circle O in exactly one point	2.	Def. of tangent		
3.	Assume OA is not perpendicular to AB	3.	Assumption		
4.	Draw the line \perp to \overrightarrow{AB} that passes through O; let X be the point of intersection	4.	Auxiliary line		
5.	OX < OA	5.	Longest Side Inequality (∠X is rt.)		
6.	X is interior to circle O	6.	Def. of interior		
7.	AB contains a chord of circle O	7.	Chord Postulate		
8.	AB intersects circle O in 2 points	8.	Def. of chord		
9.	$\overrightarrow{OA} \perp \overrightarrow{AB}$	9.	Law of Contradiction		

Theorem 9.6: If a line is perpendicular to a radius at a point on the circle, then the line is tangent to the circle.

Look at:

*If you are given a circle and a point in the exterior of the circle, you can find 2 line segments that are tangent to the circle.

<u>Theorem 9.7</u>: Tangent segments extending from a given exterior point to a circle are congruent.

Given:	Circle A with
	exterior point X
	\overline{XM} and \overline{XN} are
	tangent to circle A
Prove:	$\overline{XM} \cong \overline{XN}$

	Statement		Reason
1.	Circle A <u>with exterior</u> point X; XM and XN are tangent to circle A	1.	Given
2.	Draw AM, AN, AX	2.	Auxiliary lines
3.		3.	
4.		4.	
5.		5.	
6.		6.	
7.		7.	
8.		8.	
9.		9.	

Solution:

Given: Circle A with exterior point X \overline{XM} and \overline{XN} are tangent to circle A **Prove**: $\overline{XM} \cong \overline{XN}$

Statement

Reason

1.	Circle A <u>with exterior</u> point X; XM and XN are tangent to circle A	1.	Given
2.	Draw AM, AN, AX	2.	Auxiliary lines
3.	$\overline{AM}\cong\overline{AN}$	3.	Radii of circle ≅
4.	$\overrightarrow{AM} \perp \overrightarrow{XM}, \ \overrightarrow{AN} \perp \overrightarrow{XN}$	4.	radius to the point of tangency is \perp the tangent segment (9.4)
5.	∠XMA and ∠XNA are rt. angles	5.	Def. of \perp
6.	ΔXMA and ΔXNA are rt. triangles	6.	Def. of right Δ 's
7.	$\overline{AX} \cong \overline{AX}$	7.	Reflexive
8.	$\Delta XAM \cong \Delta XAN$	8.	HL
9.	$\overline{XM}\congXN$	9.	Def. of $\cong \Delta$'s

Definition: A common tangent is a line that is tangent to each of two coplanar circles.

2 Types of Common Tangents:

- 1. <u>Internal common tangents</u> intersect the segment joining the centers.
- 2. <u>External common tangents</u> do not intersect the segment joining the centers.

lines *a* and *d* are internal common tangents lines *b* and *c* are external common tangents

Definition: Tangent circles are coplanar circles that are tangent to the same line at the same point.

Two Ways that Circles can be Tangent:

- 1. Internally tangent circles are tangent on the same side of the common tangent.
- 2. Externally tangent circles are tangent circles on opposite sides of the common tangent.

Circle P and circle N are <u>externally tangent</u> circles. Circle P and circle M are <u>externally tangent</u> circles. Circle M and circle N are <u>internally tangent</u> circles.

<u>Sample Problems</u>: Given circle M and circle K with common tangents \overrightarrow{AB} and \overrightarrow{CD} , m $\angle BKE = 45^{\circ}$, KD = 8, MC = 12

1. Find EB.

 $\triangle EKB$ is rt. isos. \triangle , so EB=BK=8, since radius=8

2. Find AE.

Since $\triangle EKB$ is rt. isos. \triangle , $m \angle KEB = 45$ Then $m \angle AEM = 45$ (vertical angle with $\angle KEB$) $\triangle MAE$ is rt. isos \triangle since $\angle A$ is rt. (\perp radius to tan) AE = MA = 12, since radius = 12

3. Find EF.

<u>*Plan*</u>: Find ME and subtract MF, which is 12. By Pythag. Thm, $ME = 12\sqrt{2}$ and $EF = 12\sqrt{2}$ - 12

4. Find AB.

AB = AE + EB = 12 + 8 = 20

5. Find MK.

$$MK = ME + EK$$
 $EK2 = EB2 + BK2$
 $MK = 12\sqrt{2} + 8\sqrt{2}$
 $EK2 = 82 + 82$
 $MK = 20\sqrt{2}$
 $EK = 8\sqrt{2}$

Definitions:

A <u>central angle of a circle</u> intersects the circle in two points and has its vertex at the center of the circle. (The angle and circle are coplanar.)

An <u>inscribed angle of a circle</u> is an angle with its vertex on a circle and with its sides containing chords of a circle.

*<u>Note</u>: Each of these angles determines a pair of arcs of the circle.

Given: Circle K

∠UVW is an inscribed angle

∠LKM is a central angle

Definition: Arc measure is the same measure as the degree measure of the central angle that intercepts the arc.

 $m \angle BAC = 60^{\circ}$ $mBC = 60^{\circ}$

 $m \angle BAC = 180^{\circ}$ mBDC = 180°

 $\widehat{\text{mCDB}} = 300^{\circ}$

Definitions:

A <u>minor arc</u> is an arc measuring less than 180° . Minor arcs are denoted with 2 letters, such as \widehat{AB} where A and B are endpoints of the arc.

A <u>major arc</u> is an arc measuring more than 180°. Major arcs are denoted with 3 letters, such as ABC, where A and C are endpoints and B is another point on the arc.

A semicircle is an arc measuring 180°.

<u>Arc Addition Postulate (9.2)</u>: If B is a point on \widehat{AC} , then mAB + mBC = mAC

**The degree measure of a major arc can be given in terms of its associated minor arc because the 2 arcs must add to give the entire circle, which is 360°.

<u>Major Arc Theorem</u> (9.8): $\widehat{mACB} = 360^{\circ} - \widehat{mAB}$

Definition: <u>Congruent arcs</u> are arcs on congruent circles that have the same measure.

<u>Question</u>: Why do the circles have to be congruent?

<u>Answer</u>: Arcs that have the same degree measure are not the same size if the circles are not the same.

<u>Theorem 9.9</u>: Chords of congruent circles are congruent if and only if they subtend congruent arcs.

	Statement		Reason
1.	$\bigcirc P$ with chord WX , $\bigcirc Q$ with chord UV , $\bigcirc P \cong \bigcirc Q$, $UV \cong WX$	1.	Given
2.	$\overline{QU}\cong\overline{PX},\ \overline{QV}\cong\overline{PW}$	2.	Radii of circles are \cong
3.	$\Delta UQV \cong \Delta XPW$	3.	SSS
4.	$\angle UQV \cong \angle XPW$	4.	Def. of $\cong \Delta$'s
5.	m∠ UQV = m∠XPW	5.	Def. of $\cong \angle$'s
6.	m∠ UQV = mÛV, m∠XPW = mŴX	6.	Def. of arc measure
7.	$m\widehat{UV} = m\widehat{XW}$	7.	Substitution
8.	$\widehat{UV}\cong\widehat{XW}$	8.	Def. of \cong arcs
9.	If $\overline{UV} \cong \overline{WX}$, then $UV \cong WX$	9.	Law of Deduction

Theorem 9.10: In congruent circles, chords are congruent if and only if the corresponding central angles are congruent.

Theorem 9.11: In congruent circles, minor arcs are congruent if and only if their corresponding central angles are congruent.

Theorem 9.12: In congruent circles, two minor arcs are congruent if and only if the corresponding major arcs are congruent.

Sample Problem: Given circle M with diameters DB and \overline{AC} , and $\overline{mAD} = 108^{\circ}$.

- 1. Find m \angle AMB. $m \angle AMB = 180^{\circ} - 108^{\circ} = 72^{\circ}$
- 2. Find m \angle BMC.
- 3. Find mDAB.
- 4. Find mDC.

 $m \angle BMC = 108^{\circ}$ (vert. \angle 's)

180°, since it is a semicircle

 $mDC = 180^{\circ} - 108^{\circ} = 72^{\circ}$

Sample Problems: Use the diagram to answer the following questions. AD is a diameter.

1. Name 9 minor arcs.

 $\widehat{AB}, \widehat{AC}, \widehat{BC}, \widehat{BD}, \widehat{BE}, \widehat{CD}, \widehat{CE}, \widehat{DE}, \widehat{AE}$

2. Name 3 major arcs.

ACE, ADC, ADB, etc.

3. Find $\widehat{\mathsf{mAB}}$.

 $m \angle AMB = 180^{\circ} - 45^{\circ} - 60^{\circ} = 75^{\circ}$, so $mAB = 75^{\circ}$

4. Find mAE.

 $m \angle AME = 180^{\circ} - 30^{\circ} = 150^{\circ}$, so $MAE = 150^{\circ}$

5. Find $\widehat{mCD} + \widehat{mDE}$.

 $45^{\circ} + 30^{\circ} = 75^{\circ}$

Sample Problem:

Given: Circle Q with tangent \overrightarrow{CP} , $m \angle CPQ = x$

Prove: mÂC = 90° - x

	Statement	Reason
1.	Circle Q with tangent \overrightarrow{CP} , m $\angle \overrightarrow{CPQ} = x$	1. Given
2.		2.
3.		3.
4.		4.
5.		5.
6.		6.
7.		7.
8.		8.
9.		9.

Solution:

Given:	Circle Q with tangent ĈP, m∠ CPQ = x	Q	C	X
--------	--	---	---	---

Prove: mAC = 90° - x

	Statement		Reason
1.	Circle Q with tangent \overrightarrow{CP} , m $\angle \overrightarrow{CPQ} = x$	1.	Given
2.	CQ⊥ĈP	2.	Radius \perp to tangent (Thm. 9.4)
3.	\angle QCP is a rt. \angle	3.	def. of perpendicular
4.	Δ QCP is a rt. Δ	4.	def. of rt. Δ
5.	∠CQP and ∠CPQ are complementary	5.	acute \angle 's of rt. \triangle are complementary (6.18)
6.	m∠CQA + x = 90°	6.	Def. of comp. ∠'s
7.	m∠CQA = 90° - x	7.	Ad. Prop. of Eq.
8.	m∠CQA = mÂĈ	8.	Def. of arc meas.
9.	$\widehat{\mathrm{mAC}} = 90^\circ - \mathrm{x}$	9.	Subst. (6 into 7)

Ρ