Geometry Week 20 sec. 9.4 to 9.6

section 9.6

 $\angle A$ and $\angle B$ are inscribed. How are their angle measures related?

Answer: They are equal.

Theorem 9.13: The measure of an inscribed angle is equal to one-half the measure of its intercepted arc.

**To prove this theorem we must consider 3 possible cases. Consider circle K:

1

Proof of Case 1:

Given: Circle K with inscribed ∠ABC that intercepts AC

Prove: $m\angle KBC = \frac{1}{2} mAC$

Statement

Reason

1.	Circle K with inscribed $\angle ABC$ that intercepts \overrightarrow{AC}	1.	Given
2.	K lies on ∠ABC	2.	Given for Case 1
3.	Draw KC	3.	Auxiliary line
4.	$\overline{KB}\cong\overline{KC}$	4.	Radii of circle are \cong
5.	Δ KBC is isosceles Δ	5.	Def. of isosceles Δ
6.	∠KBC ≅ ∠BCK	6.	Isosceles Δ Thm.
7.	m∠KBC = m∠BCK	7.	Def. of \cong angles
8.	m∠KBC + m∠BCK = m∠CKA	8.	Exterior \angle Thm.
9.	m∠CKA = mÂĈ	9.	Def. of arc measure
10.	m∠KBC + m∠KBC = mAC	10.	Substitution (steps 7 and 9 into 8)
11.	2m∠KBC = mÂĈ	11.	Distributive
12.	$m\angle KBC = \frac{1}{2} m\widehat{AC}$	12.	Mult. prop. of equality

*<u>Corollaries</u> are theorems that follow immediately from some other theorem. Corollaries of Theorem 9.13:

Theorem 9.14: If two inscribed angles intercept congruent arcs, then the angles are congruent.

Theorem 9.15: An angle inscribed in a semicircle is a right angle.

Theorem 9.16: The opposite angles of an inscribed quadrilateral are supplementary.

1. Find $m \angle QTS$.

$$m \angle QTS = \frac{1}{2} m QS = \frac{1}{2} (64) = 32^{\circ}$$

2. Find m \angle TQR.

$$m \angle TQR = \frac{1}{2} mRT = \frac{1}{2} (80) = 40^{\circ}$$

3. Find m \angle TQP.

 $m \angle TQP = 180 - 40 = 140^{\circ}$ ($\angle TQP \& \angle RQT \text{ are supp.}$)

4. Find m \angle TPR.

 $32 + 140 + m \angle TPR = 180$, so $m \angle TPR = 8^{\circ}$

<u>Sample Problem</u>: Given circle K, $\overrightarrow{AB} \parallel \overrightarrow{DE}$ (tangent), $\overrightarrow{AC} \cong \overrightarrow{BC}$, m $\angle BAC = 56^{\circ}$

1. Find \widehat{mAC} .

m
$$\angle$$
B = 56° (isos. \triangle) so m \widehat{AC} = 2(56) = 112°

2. Find \widehat{mBC} .

Since $\overline{AC} \cong \overline{BC}$, their subtended arcs are \cong and $\overline{mBC} = 112^{\circ}$

3. Find m $\angle ACB$.

Look at $\triangle ABC$. m $\angle ACB = 180^{\circ}$ - 56°- 56° = 68°

4. Find $\widehat{\mathsf{mAB}}$.

 $\widehat{\mathsf{mAB}} = 2\mathbb{m}\angle\mathsf{ACB} = 2(68) = 136^{\circ}$

Sample Problem:

Given: In circle Q, \overrightarrow{DB} is diameter, $\overrightarrow{AD} \cong \overrightarrow{DC}$

Prove: $\triangle ABQ \cong \triangle CBQ$

Statement

Reason

1.	In circle Q, \overline{DB} is diameter, $\overrightarrow{AD} \cong \overrightarrow{DC}$	1.	Given
2.		2.	
3.		3.	
4.		4.	
5.		5.	
6.		6.	
7.		7.	
8.		8.	

Solution:

Given: In circle Q, \overrightarrow{DB} is diameter, $\overrightarrow{AD} \cong \overrightarrow{DC}$

Prove: $\triangle ABQ \cong \triangle CBQ$

	Statement		Reason
1.	In circle Q, \overline{DB} is diameter, $\overrightarrow{AD} \cong \overrightarrow{DC}$	1.	Given
2.	$\angle AQD \cong \angle CQD$	2.	2 minor arcs are \cong iff central \angle 's are \cong
3.	$\angle AQD \& \angle AQB$ are supp. $\angle CQD \& \angle CQB$ are supp.	3.	Linear pairs are supplementary
4.	$\angle AQB \cong \angle CQB$	4.	Supplements of $\cong \angle$'s are \cong
5.	$\overline{AQ} \cong \overline{QC}$	5.	All radii of circle ≅
6.	$\overline{QB} \cong \overline{QB}$	6.	Reflexive
7.	$\triangle AQB \cong \triangle CQB$	7.	SAS

Look at how 2 intersecting lines can intersect a circle:

2 secants intersect at an exterior point

2 secants intersect at an interior point

2 secants intersect at a point on the circle

secant and tangent intersect at an exterior point secant and tangent intersect at a point on the circle 2 tangents intersect at and exterior point

How do we measure the angles made by these lines?

In General,

- If the point of intersection is <u>exterior</u>, then the measure of the angle is ½ of the <u>difference</u> of the intercepted arcs.
- If the point of intersection is <u>on</u> the circle, then the measure of the angle is ½ of the <u>measure</u> of the intercepted arc.
- If the point of intersection is <u>interior</u>, then the measure of the angle is ½ of the <u>sum</u> of the intercepted arcs.

These are included in the following theorems:

<u>Theorem 9.17a</u>: The measure of an angle formed by two secants that intersect in the exterior of a circle is one-half the difference of the measures of the intercepted arcs.

Theorem 9.17b: The measure of an angle formed by a secant and tangent that intersect in the exterior of a circle is one-half the difference of the measures of the intercepted arcs.

Theorem 9.17b: The measure of an angle formed by two tangents is one-half the difference of the measures of the intercepted arcs.

*We put these together into one theorem:

<u>Theorem 9.17</u>: If 2 lines intersect a circle and intersect each other in the exterior of the circle, then the angle formed measures one-half the difference of the measures of the intercepted arcs.

*For the other types of line/circle intersections:

Theorem 9.18: The measure of an angle formed by two secants that intersect in the interior of a circle is one-half the sum of the measures of the intercepted arcs.

Theorem 9.19: The measure of an angle formed by a secant and tangent that intersect at the point of tangency is one-half the measure of the intercepted arc.

Proof of Theorem 9.17a:

Given: Circle O with secants \overrightarrow{CA} and \overrightarrow{EA} Prove: $m \angle 1 = \frac{1}{2}$ (mCE – mBD)

	Statement		Reason
1.	Circle O with secants	1.	Given
2.	Draw BE	2.	Auxiliary line
3.	m∠CBE = m∠BEA+m∠1	3.	Exterior \angle Theorem
4.	m∠1= m∠CBE - m∠BEA	4.	Add. Prop. of Eq.
5.	m∠CBE = ½ mĈE m∠BEA = ½ mBD	5.	An inscribed ∠ measures ½ measure of intercepted arc
6.	m∠1= $\frac{1}{2}$ mĈE - $\frac{1}{2}$ mBD	6.	Substitution (5 into 4)
7.	m∠1= $\frac{1}{2}$ (mCE - mBD)	7.	Distributive

Proof of Theorem 9.18

Given: \overrightarrow{AC} and \overrightarrow{BD} are secants that intersect inside circle E and form $\angle 1$

Prove: $m \angle 1 = \frac{1}{2} (m \widehat{AB} + m \widehat{DC})$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.

Solution:

Proof of Theorem 9.18

- **Given:** \overrightarrow{AC} and \overrightarrow{BD} are secants that intersect inside circle E and form $\angle 1$ **Prove:** $m \angle 1 = \frac{1}{2} (m \overrightarrow{AB} + m \overrightarrow{DC})$
 - B E C

	Statement		Reason
1.	\overrightarrow{AC} and \overrightarrow{BD} are secants that intersect inside circle E and form $\angle 1$	1.	Given
2.	Draw BC	2.	Auxiliary line
3.	m∠1= m∠ACB + m∠DBC	3.	Exterior angle Thm.
4.	m∠ACB = ½ mÂB m∠DBC = ½ mDC	4.	Inscribed ∠'s measure ½ the intercepted arc
5.	$m \angle 1 = \frac{1}{2} \operatorname{mAB} + \frac{1}{2} \operatorname{mDC}$	5.	Substitution (4 into 3)
6.	m∠1= $\frac{1}{2}$ (mAB + mDC)	6.	Distributive

Proof of Theorem 9.17b

Given: \overrightarrow{DC} is a tangent and \overrightarrow{AC} is a secant to circle B **Prove:** $m \angle 1 = \frac{1}{2} (mAXD - mDY)$

	Statement		Reason
1.	DC is a tangent and AC is a secant to circle B	1.	Given
2.		2.	
3.		3.	
4.		4.	
5.		5.	
6.		6.	
7.		7.	
8.		8.	

Solution:

Proof of Theorem 9.17b

Given: \overrightarrow{DC} is a tangent and \overrightarrow{AC} is a secant to circle B **Prove:** $m \angle 1 = \frac{1}{2} (mAXD - mDY)$

	Statement	Reason
1.	DC is a tangent and AC	1. Given
	is a secant to circle B	
2.	Draw AD	2. Auxiliary line
3.	m∠ADE=m∠CAD +m∠1	3. Ext. Angle Thm.
4.	m∠ADE - m∠CAD=m∠1	4. Add. Prop. of Eq.
5.	$m \angle ADE = \frac{1}{2} m \widehat{AXD}$	 ∠ meas. for secant and tangent at pt. of tan.
6.	m∠CAD = ½ mDY	 Inscribed ∠ measures intercepted arc
7.	½ mÂXD - ½ mDY=m∠1	7. Substitution (5,6 into 4)
8.	m∠1= $\frac{1}{2}$ (mAXD- mDY)	8. Distributive

Sample Problems: Find x.

1.

sum of other 2 arcs = $360-65-111 = 184^{\circ}$ m $\angle X = \frac{1}{2}$ sum = $\frac{1}{2}$ (184) = 92°

2.

$$29 = \frac{1}{2} (x-64)$$

$$29 = \frac{1}{2} x - 32$$

$$\frac{1}{2} x = 61$$

$$x = 122^{\circ}$$

3.

4.

5.

$$x = \frac{1}{2} (41-23) = \frac{1}{2} (18) = 9^{\circ}$$

180-58 = 122 122 = ½ x, so x = 244°

 $78 = \frac{1}{2} (360-x-x)$ 78 = 180 - x $x = 102^{\circ}$

Finding the lengths of arcs:

Theorem 9.20: If the degree measure of an arc is θ and the circumference of the circle is c, then the length of the arc is ζ given by

$$\frac{\ell}{c} = \frac{\theta}{360^{\circ}} \qquad \frac{or}{c} = \frac{\pi r \theta}{180^{\circ}}$$

**Another form of this would be
$$\ell = \frac{\pi r \theta}{180^\circ}$$

Definitions:

A <u>sector of a circle</u> is the region bounded by 2 radii and the intercepted arc.

A <u>segment of a circle</u> is the region bounded by a chord and is intercepted arc.

sector

segment

Finding the area of a sector:

4[,] 60°

Area =
$$\frac{60^{\circ}}{360^{\circ}}$$
 of circle
Area = $\frac{1}{6}$ of circle
Area = $\frac{1}{6}$ of πr^2
Area = $\frac{1}{6}$ of 16π
Area = $\frac{8\pi}{3}$ sq. inches

Theorem 9.21: The area of a sector is given by the proportion:

$$\frac{A}{A_{c}} = \frac{\theta}{360^{\circ}} \qquad \text{or} \qquad A = A_{c} \frac{\theta}{360^{\circ}}$$

where A is the area of the sector, A_c is the area of the circle, and θ is the arc measure in degrees.

**Another form of this would be $A = \frac{\pi r^2 \theta}{360^\circ}$ Finding the area of a segment:

area of segment = area of sector – area of Δ

area of sector $=\frac{\pi r^2 \theta}{360} = \frac{32\pi}{3}$ area of equilateral $\Delta = \frac{s^2 \sqrt{3}}{4} = 16\sqrt{3}$ area of segment $=\frac{32\pi}{3} - 16\sqrt{3} \approx 5.8$ square units

Sample Problems:

1. Find the area of the sector of a circle formed by a 20° central angle if the circle has diameter 12 units.

A =
$$\frac{\pi r^2 \theta}{360} = \frac{36\pi (20)}{360} = 2\pi$$
 sq. units

2. Find the length of the arc of a circle with radius 10 if the arc measures 80°.

$$\ell = \frac{\pi r^2 \theta}{360} = \frac{40\pi}{9}$$
 units

3. Find the radius of a circle containing a sector with an area of 50 sq. meters and an arc of 24°.

$$A = \frac{\pi r^2 \theta}{360}$$

$$50 = \frac{\pi r^2 (24)}{360}$$

$$r^2 = \frac{750}{\pi}$$

$$r = \sqrt{\frac{750}{\pi}} \approx 15.45 \text{ sq. meters}$$

 Find the degree measure of the arc for the sector with an area of 96 sq. inches in a circle with radius 8 inches.

$$A = \frac{\pi r^2 \theta}{360}$$
$$96 = \frac{\pi (64)\theta}{360}$$
$$\theta = \frac{540}{\pi} \approx 171.89^{\circ}$$

Finding the perimeter of a sector:

Perimeter =
$$12 + 12 + 1$$

P = $24 + \frac{60}{360}(2\pi)(12)$
P = $24 + \frac{1}{6}(24\pi)$
P = $24 + 4\pi$
P \approx 36.6 units

Sample Problem: Find the perimeter of a sector with an arc of 20° in a circle with radius 6.

$$\ell = \frac{20}{360} 2\pi (6) = \frac{2\pi}{3} \text{ units}$$

$$P = 6 + 6 + \frac{2\pi}{3}$$

$$P \approx 14.09 \text{ units}$$