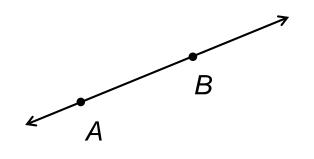

Geometry is the study of points, line, and planes and the figures they form.

Geometry has 3 undefined words: point, line, plane.

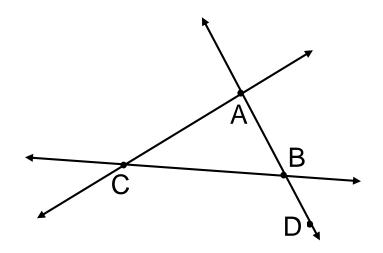

- A point shows an exact location in space.
- A <u>line</u> is a set of points that extends infinitely in both directions.

(2 points determine a line)

• A <u>plane</u> is a flat surface that extends in all directions infinitely

(3 points not on the same line determine a plane.)

Definitions:



<u>segment</u> – a part of a line consisting of 2 endpoints and the points between them

notation: AB

<u>ray</u> – a part of a line consisting of one endpoint and extending infinitely in one direction.

<u>notation</u>: \overrightarrow{AB} is the ray having A as its endpoint. \overrightarrow{BA} is the ray having B as its endpoint.

Practice Problems:

1.Name a line through A.

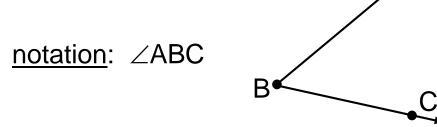
 \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , or \overrightarrow{BA} , \overrightarrow{CA} , \overrightarrow{DA}

2.Name a segment with endpoint B.

 \overline{BC} , \overline{BA} , \overline{BD} or \overline{CB} , \overline{AB} , \overline{DB}

3.Name 2 rays with endpoint C.

 \overrightarrow{CA} or \overrightarrow{CB}


4. Name the line that contains point D in 3 ways.

$$\overleftrightarrow{AD}$$
 , \overleftrightarrow{AB} , \overleftrightarrow{BD} or \overleftrightarrow{DA} , \overleftrightarrow{BA} , \overleftrightarrow{DB}

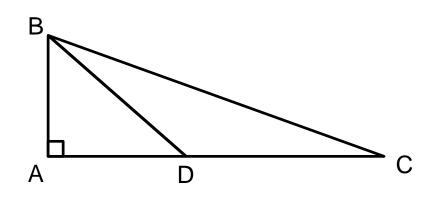
5. Name the plane.

Definition:

angle – 2 rays with the same endpoint The endpoint is called the <u>vertex</u>. Each ray is called a <u>side</u>.

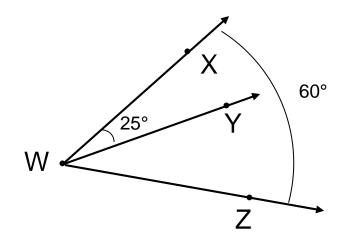
Measuring angles with Protractors:

protractor - instrument for measuring angles


<u>degree</u> – unit of measure (equals 1/180 of a semicircle)

Instead of writing: "the measure of $\angle B = 30^{\circ}$ " we write: "m $\angle B = 30^{\circ}$ "

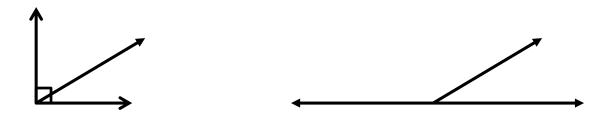
Classifying Angles According to their Measure:


Angle name	Angle measure
acute angle	$0 < x < 90^{\circ}$
right angle	$x = 90^{\circ}$
obtuse angle	$90^{\circ} < x < 180^{\circ}$
straight angle	$x = 180^{\circ}$

Practice Problems:

Answers1.Name a right angle. $\angle A$ 2.Name an obtuse angle. $\angle BDC$ 3.Name an acute angle. $\angle ABD, \angle ABC, \angle ABC, \angle BCD, \angle ADB$ 4.Name a straight angle. $\angle ADC$

Sample Problem: Find m∠YWZ.



Solution: $m \angle YWZ = 60^{\circ} - 25^{\circ} = 35^{\circ}$

Definitions:

Two angles are <u>complementary</u> if the sum of their angle measures is 90°.

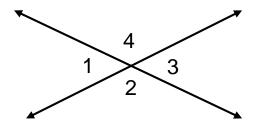
Two angles are <u>supplementary</u> if the sum of their angle measures is 180°.

Sample Problems: Let $m \angle A = 58^{\circ}$. Find the following measures:

1. The supplement of $\angle A$.

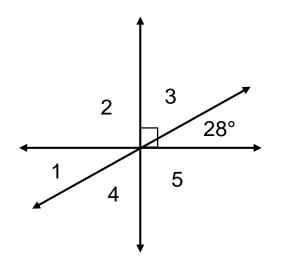
answer: 122°

2. The complement of $\angle A$.

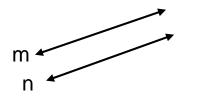

answer: 32°

Definition:

Intersecting lines – lines that cross at one point

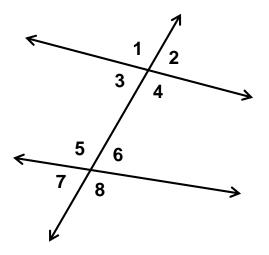

Adjacent angles – angles that share a common side and endpoint.

<u>Vertical angles</u> – angles formed by 2 intersecting lines, such as $\angle 1$ and $\angle 3$ or $\angle 2$ and $\angle 4$.


Definition:

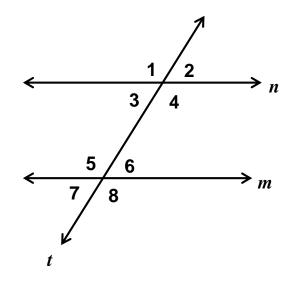
Sample Problems: Find the missing measures.

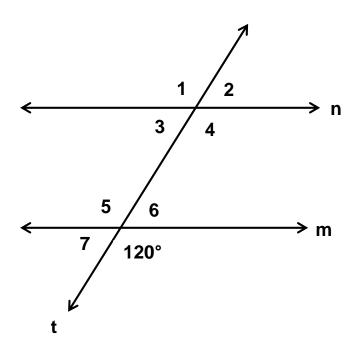
Definition:


Parallel lines – lines in the same plane that never intersect. (symbol: //)

m // n

A transversal is a line that intersects two or more lines.


Terms for angles formed when a transversal intersects 2 lines:

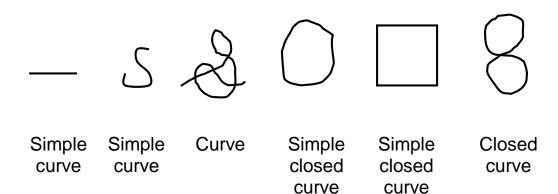

 $\angle 3$ and $\angle 6$ are <u>alternate</u> <u>interior angles</u> $\angle 1$ and $\angle 8$ are <u>alternate</u> <u>exterior angles</u> $\angle 2$ and $\angle 6$ are <u>corresponding</u> <u>angles</u>

If the lines *n* and *m* are parallel,

- The alternate interior angles are equal.
- The alternate exterior angles are equal.
- The corresponding angles are equal.

Sample Problems: Find the missing measures if lines *n* and *m* are parallel.

Definitions


<u>curve</u> – a continuous set of points (can be "straight")

closed curve - begins and ends at the same point

<u>simple curve</u> – doesn't intersect itself (unless starting and ending points coincide)

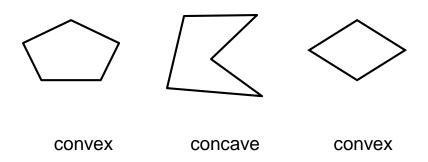
simple closed curve – a simple curve that is also a closed curve

Examples of curves:

Polygons

Definitions:

polygon – a simple closed curve that consists only of segments


side of a polygon – one of the segments that defines the polygon

vertex – the endpoint of the side of a polygon

Types of Polygons:

<u>convex set</u> – every interior angle is less than 180°

<u>concave set</u> – at least one interior angle is greater than 180° (The "cave in.")

Definition:

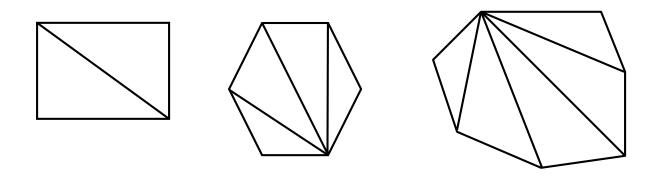
<u>Regular polygon</u> – all sides are the same length and all angles are the same measure. (Use hash marks to show this.)

Polygon Classification

Number of sides	Name of polygon
3	triangle
4	quadrilateral
5	pentagon
6	hexagon
7	heptagon
8	octagon
9	nonagon
10	decagon
11	hendecagon
12	dodecagon
n	<i>n</i> -gon

Triangles (polygon with 3 sides)

Classifying triangles by their angles:

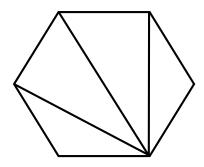

- An <u>acute triangle</u> has 3 acute angles.
- A right triangle has a right angle.
- An obtuse triangle has an obtuse angle.

Classifying triangles by the length of their sides:

- A <u>scalene triangle</u> has no congruent sides.
- An isosceles triangle has at least 2 congruent sides.
- An equilateral triangle has 3 congruent sides.

Important Fact: The sum of the measures of a triangle is 180°.

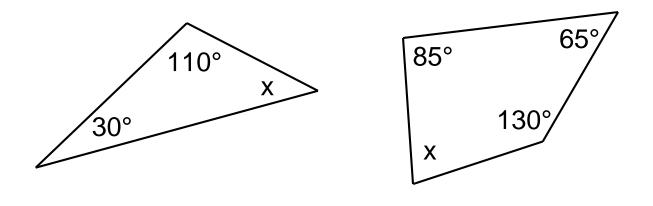
To find the sum of the measures of any other polygon, we divide the polygon into triangles. Since each triangle equals 180°, multiply the number of triangles times 180° for the total measure of all angles.


4 sides = 2 Δ 's 6 sides = 4 Δ 's 7 sides = 5 Δ 's

- ***In general, there are *n*-2 triangles formed if a figure has *n* sides.
- ***The total angle measure of a polygon of n sides is 180(n-2).

Interior Angle Measure:

If the polygon is regular, then to find the measure of each angle, take the total angle measure and divide it by the number of angles: 180(n-2)


Example:

6 sides = 4 triangles $4 \cdot 180 = 720$

 $720^{\circ} \div 6$ angles = 120°

Sample Problems: Find the missing measures.

 $x = 40^{\circ}$

 $x = 80^{\circ}$

Quadrilaterals (polygon with 4 sides)

Classifying quadrilaterals:

<u>trapezoid</u> – at least one pair of parallel sides <u>parallelogram</u> –2 pairs of parallel sides <u>rectangle</u> – a parallelogram with 4 right angles <u>rhombus</u> – a parallelogram with 4 congruent sides <u>square</u> – a rectangle with 4 congruent sides