Perimeter and Circumference

Definition: The <u>perimeter</u> of a polygon is the distance around it.

Figure	Shape	Formula
Triangle	a b c	P = a + b + c
Rectangle	w	P=2l+2w
Square	s	P = 4s
Parallelogram	b a	P=2a+2b
trapezoid	d a∠ c b	P = a + b + c + d

Practice Problems:

1. What is the perimeter of a square if the side length is 12 units?

$$P = 4(12) = 48 \text{ units}$$

2. What is the length of a side of a square if its perimeter is 88 yards?

$$88 = 4s \rightarrow s = 22 yards$$

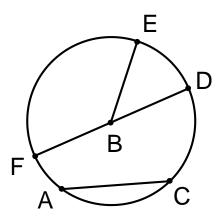
3. What is the length of a diagonal of a square whose side is 12 feet?

$$12^2 + 12^2 = d^2 \rightarrow d = 12\sqrt{2} \text{ feet}$$

4. What is the perimeter of a regular decagon if the sides are each 14 inches?

$$P = 10(14) = 140$$
 inches

5. What is the length of a rectangle whose width is 3 inches and perimeter is 30 inches?


$$2l + 2(3) = 30 \rightarrow l = 12$$

Definitions:

- <u>circle</u> the set of all points the same distance from a given point in a plane
- chord a line segment joining 2 points on a circle
- diameter a chord passing through the center
- <u>radius</u> a line segment from the center to a point on a circle.

Example:

- center: B
- radii: BE, BD, BF
- chords: FD, AC
- diameter: FD

NOTE: In every circle, $\frac{circumference}{diamter}$ is always the same number. We call this number π . (\approx 3.14)

Definition: The <u>circumference</u> is the distance around the circle.

Formula:
$$C = \pi d$$
 or $C = 2\pi r$

Practice Problems: (Use 3.14 for π)

1. If the radius is 2 inches, find the circumference.

C = 2(3.14)(2) = 12.56 inches

2. If the diameter is 7 feet, find the circumference.

C = (3.14)(3.5) = 21.98 feet

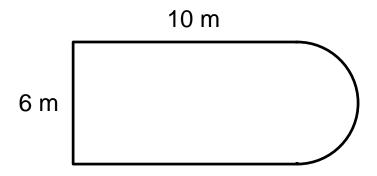
3. If the circumference is 9 feet, find the radius.

$$C = 2\pi r$$

9 = 2(3.14)r
$$\frac{9}{6.28} = \frac{6.28r}{6.28}$$

r = 1.43 feet

4. What is the diameter if the circumference of the circle is 112 m?


$$C = \pi d$$

$$112 = 3.14d$$

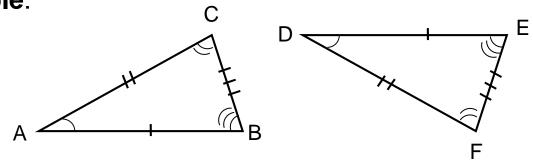
$$\frac{112}{3.14} = \frac{3.14d}{3.14}$$

$$d = 35.7 m$$

5. Find the perimeter of this figure:

semicircle =
$$\frac{1}{2}(2)(3.14)(3) = 9.42$$

P = 10 + 6 + 10 + 9.42 = 35.42 m


Congruence and Similarity

Definition: <u>Congruent polygons</u> have the same size and shape.

Symbol: \cong

**If 2 figures are congruent, then their corresponding sides and corresponding angles are congruent.

Example:

 $\Delta \text{ABC}\cong \Delta \text{DEF}$

$\overline{AB}\cong\overline{DE}$	$\angle A \cong \angle D$
$\overline{AC}\cong\overline{DF}$	$\angle B \cong \angle E$
$\overline{BC}\cong\overline{EF}$	$\angle C \cong \angle F$

Practice Problem: Given $\triangle QRS \cong \triangle TUV$, find:

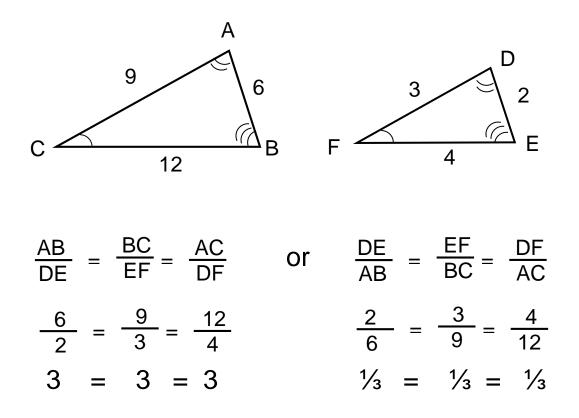
Answers

1. ∠ <i>Q</i> ≅	$\angle T$
2. <i>QR</i> =	TU
3. <i>RS</i> =	UV
4. ∠U ≅	$\angle R$
5. <i>m∠S</i> =	$m \angle V$
6. $\overline{TV} \cong$	\overline{QS}

Definition: <u>Similar polygons</u> have the same shape.

Symbol: ~

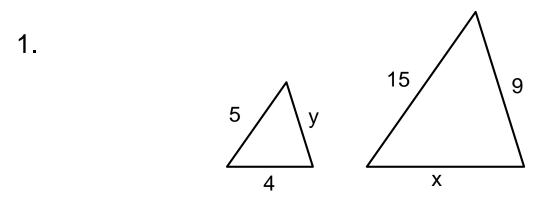
**If 2 figures are similar, then their corresponding angles are congruent and their corresponding sides are proportional.

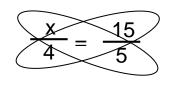

Example: $\triangle ABC \sim \triangle DEF$

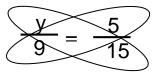
From the notation we know: $\angle A \cong \angle D$ $\angle B \cong \angle E$ $\angle C \cong \angle F$

Ratios of corresponding sides: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

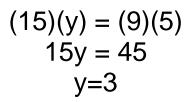
We say "AB is to DE as BC is to EF" etc.

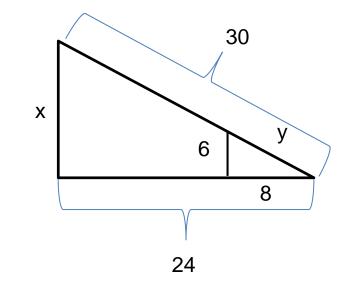

Let's put lengths on the sides and check the ratios.

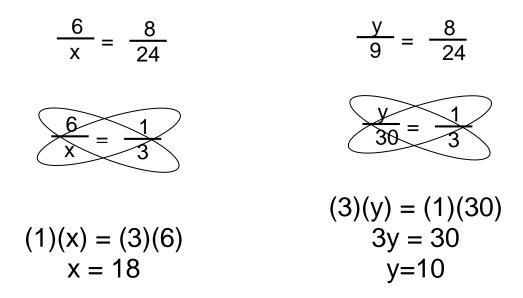



**It does not matter which triangle you start with for your proportion.

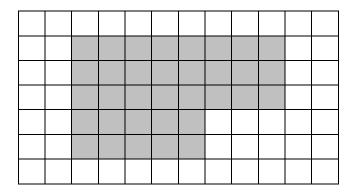
- We say that 3 is the <u>scale factor</u> of the larger triangle to the smaller triangle.
- We say 1/3 is the <u>scale factor</u> of the smaller triangle to the larger triangle.


Pactice Problems: Find the unknown values.





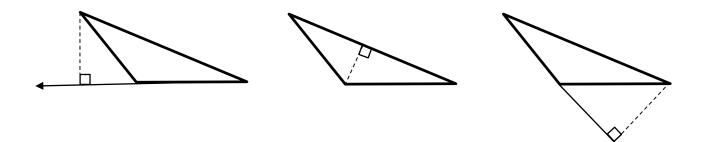
(5)(x) = (4)(15)5x = 60 x=12



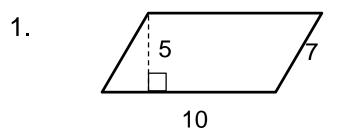
Area

Definition: <u>Area</u> is the number of square units needed to cover a region or surface.

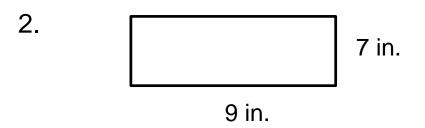
Example:

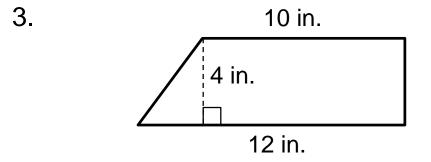

Area = 34 square units

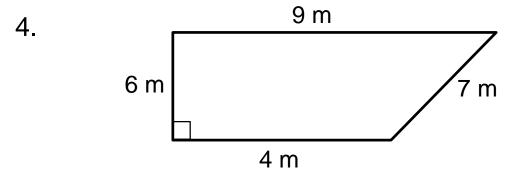
Area Formulas

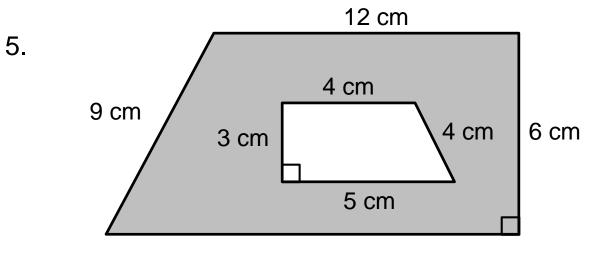

Figure	Shape	Formula
Rectangle	h b	A = bh
Square	s	$A = s^2$
Parallelogram	b h b	A = bh
Triangle	b	$A=\frac{1}{2}bh$
trapezoid	b_2 b_1 b_1	$A = \frac{1}{2}(b_1 + b_2)h$

The <u>height</u> of a figure is the perpendicular distance between the base and the top side or vertex.

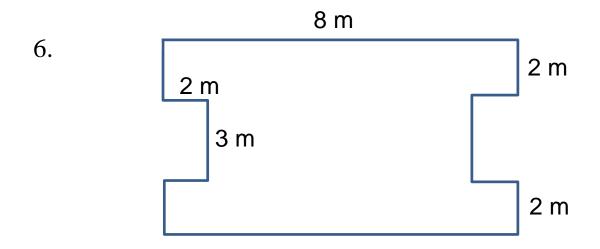

Triangles have 3 heights, called <u>altitudes</u>. The altitude is the perpendicular segment that connects a vertex to the line that contains the opposite side.


Practice Problems: Find the area.


Answer: A = (10)(5) = 50 square units


Answer:
$$A = (9)(7) = 63 in^2$$

Answer:
$$A = \frac{1}{2}(12 + 10)(4) = 44 \text{ sq. in.}$$



Answer: $A = \frac{1}{2}(4+19)(6) = 39 m^2$

14 cm

Answer:
$$A = \left[\frac{1}{2}(12+14)(6)\right] - \left[\frac{1}{2}(4+5)(3)\right]$$

 $A = 78 - 13.5 = 64.5 \ cm^2$

Answer:
$$A = (7 \cdot 8) - (2 \cdot 3) - (2 \cdot 3) = 44 m^2$$

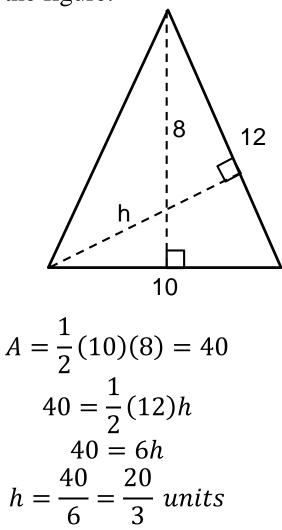
7. What is the length of a side of a square whose area is 225 square inches?

$$225 = s^2$$

 $s = 15 in$.

8. What is the width of a rectangle if the area is 240 square feet and its length is 20 feet?

$$240 = 20w$$
$$w = 12 feet$$


9. What is the area of a triangle with a base of 12 inches and a height of 9 inches?

$$A = \frac{1}{2}(12)(9) = 54 \ in^2$$

10. If the base of a triangle is 10 cm and the aread is 100cm^2 what is its height?

$$100 = \frac{1}{2}(10h)$$
$$100 = 5h$$
$$h = 20 \ cm$$

11. Find h in the figure.

- 12. Take a square with a side of 10 inches. Then cut out a square with a side of 2 inches from each corner. What is the remaining area?
- $A = area \ of \ large \ square area \ of \ 4 \ small \ squares \\ A = 10^2 4(2^2) = 84 \ in^2$