Week 6 Pre-Calc Assignment:

Day 1: pp. 140-142 #5-39 odd Day 2: pp. 140-142 #45-51 odd, 57-61 odd, 65-79 odd, 89-97 odd Day 1: pp. 148-49 #1-57 odd Day 2: pp. 148-49 #59-101 odd, omit #89

Notes on Assignment:

Pages 140-142:

- #13: Remember to put 0x in the divisor to hold the place.
- #15: Remember to put $0x^3$ and 0x in the top polynomial.
- #17: You must multiply out the denominator first.
- #37-39: First use synthetic division so you can write it in the form f(x) = (x-k)q(x) + r. Then put k into f(x) to verify that you get the same number as your remainder was in the synthetic division. (For example, in #37, do synthetic division using k=4. You should get f(x) = (x-4)(something) + remainder. Your remainder is also what f(4) should work out to be.)
- #45-47: You do not need to verify using another method.
- #57-59: Use synthetic division with the first factor. Use synthetic division on the resulting quotient polynomial and the 2nd factor. Take the resulting quotient polynomial and factor it if necessary to find the remaining factors and zeros.
- #61: If (2x+1) is a factor, then x = -1/2 must be a zero (since 2x+1 = 0 gives us x = -1/2). This means we can use (x+1/2) as a factor instead of (2x+1). This allows us to use synthetic division. (We will put -1/2 out front.) Do the same with (3x-2).
- #65b) & 67b): Your zero function should show you that one of the zeros is an integer. Use this zero in synthetic division to get the quotient polynomial. In both #65 and #67 the resulting quadratic will not factor, so use the quadratic formula to find the factors.
- #69: Remember from #61 that if you have division by (2x-3) you can write this as (x 3/2). Use this in your synthetic division.
- #73: Either us long division or notice that $x^2 + 3x + 2 = (x+1)(x+2)$. An alternate method would be to divide out (x+1) and then divide the resulting quotient polynomial by (x+2).

- #75a): Use L1 and L2 or make lists called YEAR and M. After graphing your statplot, remember to use [ZOOM] [ZoomStat] to set your window.
- #75b): Use [STAT] [CALC] [CubicReg] for a cubic regression equation. When you enter your lists, also enter Y1 using [VARS] [Y-VARS] [Function] [Y1]. Your screen should show: CubicReg L1,L2,Y1. Press [ENTER] for your equation and [GRAPH] to see the graph.
- #75c): Since your equation is already stored in Y1, go to [TABLESET] and set TblStart = 0 (for t = 0) and Δ tbl = 1. Press [TABLE] to see the values.
- #75d): 2005 is t = 15. Use [TABLE] to find the value at 15, not synthetic division. ZOOM out on your graph to see what the graph looks like once you get past your scatterplot values. Is your equation a good model for predicting the number of military personnel in the future? Why or why not?

Pages 148-49:

- #27-39: Remember to use Distributive and FOIL. Use FOIL when squaring a complex number also.
- #57: Multiply out the denominator first, and then choose your conjugate.
- #59: You must get a common denominator. To do this, multiply the first fraction by $\frac{(1-i)}{(1-i)}$

and the 2nd fraction by
$$\frac{(1+i)}{(1+i)}$$
.

#61: You must get a common denominator. To do this, multiply the first fraction by $\frac{(3+8i)}{(3+8i)}$

and the 2nd fraction by $\frac{(3-2i)}{(3-2i)}$. Multiply the numerators and then add both

numerators and put the sum over the common denominator, which is (3+8i)(3-2i). When you multiply out the denominator you will get a complex number, so you will have to rationalize the denominator as well, to finish the problem.

- #63-71: You can clear the fractions or decimals first if you want to.
- #81: Remember that cubing means to multiply it times itself 3 times. It doesn't mean to cube each term.
- #83: Factor out all of the i^4 's first, because $i^4 = 1$.

#101: Use buckets to help with the equation. Multiply the buckets.

50%		50%		100%		60%
E	-	v	+	v	=	5
3		X		X		J