Inverse Functions

Look at the function $f = \{(1,5), (2,6), (3, 7), (4, 8)\}$

If we interchange the coordinates we get:

 $\{(5, 1), (6, 2), (7, 3), (8, 4)\}$

This is called the <u>inverse function</u> of the function f and we use the notation f⁻¹.

So, $f^{-1} = \{(5, 1), (6, 2), (7, 3), (8, 4)\}$

- <u>Note</u>: The domain of f is the same as the range for f⁻¹. The range of f is the same as the domain for f⁻¹.
- Also note: Functions and their inverse tend to "undo" each other.

$$f(f^{-1}(6)) = f(2) = 6$$
 and $f^{-1}(f(3)) = f(7) = 3$

**This gives us a great test for inverses. If f(g(x)) = x and g(f(x)) = x, then we know that the functions are inverses.

Example: Verify that f(x) = 2x - 3 and $g(x) = \frac{x+3}{2}$ are inverse functions.

 $f(g(x)) = f(\frac{x+3}{2}) = 2[\frac{x+3}{2}] - 3 = (x+3) - 3 = x$

 $g(f(x)) = g(2x - 3) = (\frac{[2x-3] + 3}{2}) = \frac{2x}{2} = x$

Since both f(g(x)) = x and g(f(x)) = x, the functions are inverses.

The Graph of an Inverse Function

Graph $y_1 = x^3$ Graph $y_2 = \sqrt[3]{x}$ This is the inverse of $y = x^3$

Now graph $y_3 = x$

**Notice that the graph of $y = \sqrt[3]{x}$ is the reflection of $y = x^3$ in the line y = x.

<u>Summary</u>: If the point (a, b) lies on the graph of f, then the point (b, a) must lie on the graph of f^{-1} and vice versa. The graph of f^{-1} is a reflection of the graph of f in the line y = x.

Drawing Inverses on the Graphing Calculator

You can draw the inverse of any equation entered at the [y=] screen but you cannot *graph* it. This means that you will be able to see it on your graph, but you cannot use [TRACE] or [2nd] [CALC] or any other operations on it.

To draw the inverse of a function:

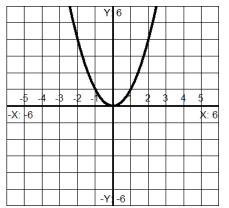
- 1. Enter and equation into Y_1 .
- 2 Press [2nd] [DRAW] [DrawInv]
- 3. At the home screen, after DrawInv enter Y_1 and press [ENTER].

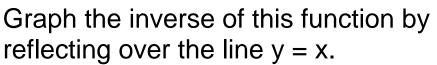
(<u>Reminder</u>: To enter Y_1 , press [VARS] [Y-VARS] [Function] [Y_1].)

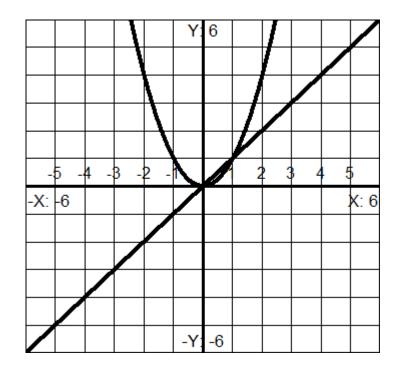
- <u>Note</u>: If you find the inverse of a function algebraically, you check it on your calculator by doing the following:
 - 1. Enter your function in Y_1 .
 - 2. Enter the inverse that you found in Y_2 .
 - 3. Draw the inverse of Y_1 .

If the inverse is drawn coincides with Y_2 , then your inverse is correct.

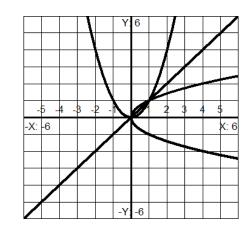
One-to-One Functions







Solution:



Is the inverse a function?

When is the inverse of a function also a function?

If every y-coordinate of the original function is paired with only one x-coordinate.

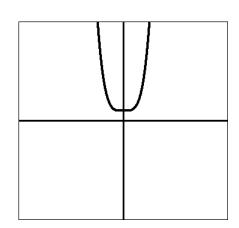
We call this the <u>Horizontal Line Test</u>.

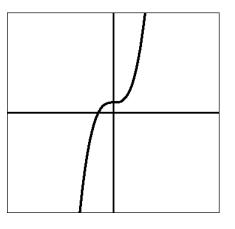
<u>Horizontal Line Test</u>: If every horizontal line meets the graph of a function in at most one point, then the inverse of this function will be a function.

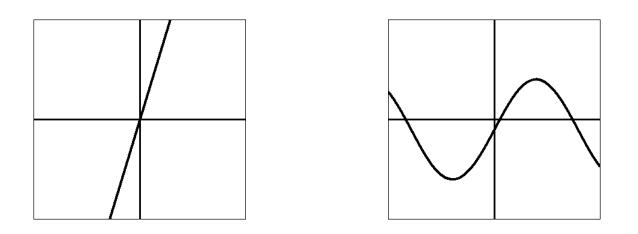
Definition: A function *f* is <u>one-to-one</u> if each value of the dependent variable corresponds to exactly one value of the independent variable. A function has an inverse function if and only if the function is one-to-one.

**Every function has an inverse, but the inverse itself is not always a function.

Example: Which of these functions have an inverse function?







Solution: no, yes, yes, no (reading left to right)

Finding Inverse Functions Algebraically

Steps for finding the inverse of a function:

- 1. Replace f(x) with y.
- 2. Interchange the roles of *x* and *y*.
- 3. Solve this new equation for y.
- 4. Replace y by $f^{-1}(x)$.

* <u>Note</u>: To see if your inverse is a <u>function</u>, you will have to do the Horizontal Line Test on the original function, or the Vertical Line Test on your inverse.

To verify that f^{-1} and f are inverse functions:

- 1. Show that the domain of one is the same as the range of the other, and vice versa.
- range of the other, and vice versa. 2. Show that $f(f^{-1}(x)) = f^{-1}(f(x)) = x$.

Example: Find the inverse of each of the following functions.

a)
$$f(x) = \sqrt[3]{x-5}$$

 $y = \sqrt[3]{x-5}$
 $x = \sqrt[3]{y-5}$
 $x^3 = y - 5$
 $y = x^3 + 5$
 $f^{-1}(x) = x^3 + 5$
 $y = x^3 + 5$

Show that
$$f(f^{-1}(x)) = f^{-1}(f(x)) = x$$
.
 $f(f^{-1}(x)) = f(x^3 + 5) = \sqrt[3]{[x^3 + 5] - 5} = \sqrt[3]{x^3} = x$
 $f^{-1}(f(x)) = f^{-1}(\sqrt[3]{x - 5}) = [\sqrt[3]{x - 5}]^3 + 5 = x - 5 + 5 = x$

b)
$$g(x) = \frac{x-4}{x+2}$$

$$y = \frac{x-4}{x+2}$$
$$x = \frac{y-4}{y+2}$$
$$x(y+2) = (y-4)$$
$$xy+2x = y-4$$
$$xy-y = -2x-4$$
$$y(x-1) = -2x-4$$
$$y = \frac{-2x-4}{x-1}$$
$$g^{-1}(x) = \frac{-2x-4}{x-1}$$

c)

$$f(x) = 4x - 5$$

y = 4x - 5
x = 4y - 5
x + 5 = 4y
4y = x + 5
y = $\frac{1}{4}x + \frac{5}{4}$
f⁻¹(x) = $\frac{1}{4}x + \frac{5}{4}$