Lines

We have learned that the graph of a linear equation

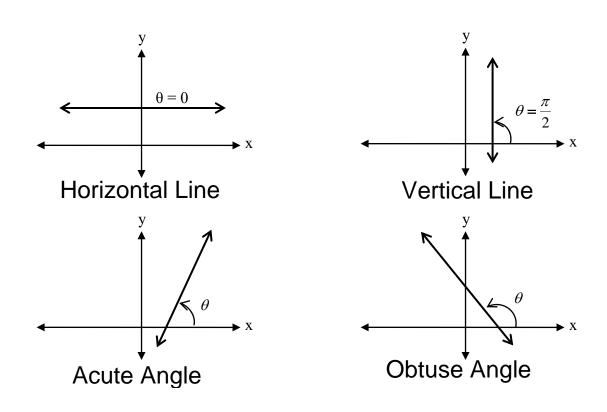
y = mx + b

is a nonvertical line with slope m and y-intercept (0, b).

We can also look at the angle that such a line makes with the *x*-axis. This is called the line's <u>inclination</u>.

Definition of Inclination

The <u>inclination</u> of a nonhorizontal line is the positive angle θ (less than π) measured counterclockwise from the *x*-axis to the line.



The inclination of a line is related to its slope in the following way:

Inclination and Slope

If a nonvertical line has inclination θ and slope *m*, then

 $m = tan \theta$.

Example: Find the inclination of the line $y = \frac{1}{2}x + 5$.

<u>Solution</u>: The slope of the line is $\frac{1}{2}$, so for its inclination,

$$\tan\theta=\frac{1}{2}.$$

Because the slope is positive, we know that the graph goes up and to the right, and thus makes an acute angle with the *x*-axis. This corresponds to a Quadrant I angle and we can use $\arctan(\frac{1}{2})$ to find the answer.

$$\theta = \arctan\left(\frac{1}{2}\right) = 26.6^{\circ}$$

Example: Find the inclination of the line 2x + y = 5.

Solution: The equation of the line can be written as y = -2x + 5, which tells us that slope of the line is -2, so for its inclination,

 $\tan \theta = -2.$

Because the slope is negative, we know that the graph goes down and to the right, and thus makes an obtuse angle with the *x*-axis. This corresponds to a Quadrant II angle.

If we use arctan to find the answer, our calculator tells us

$$\theta = \arctan(-2) = -63.4^{\circ}$$

This is because the range for the arctangent function is from

$$\frac{-\pi}{2}$$
 to $\frac{\pi}{2}$. (*or* -90° to 90°)

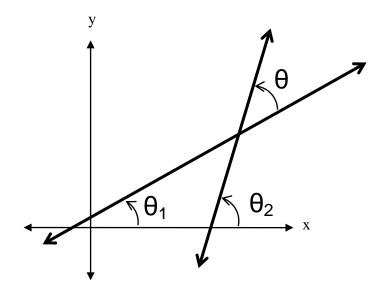
Since our angle θ is obtuse (think of a Quadrant II angle), we need to find θ by using 63.4° as the reference angle.

$$\theta = 180^{\circ} - 63.4^{\circ} = 116.6^{\circ}$$

The Angle Between Two Lines

If two distinct lines intersect and are not perpendicular, then their intersection forms two pairs of opposite angles (also called vertical angles). The **smaller** of these angles is called the <u>angle between the two lines</u>.

Look at the graph of the 2 intersecting lines.



Because θ_2 is the exterior angle of the triangle, it must be equal to the sum of the remote interior angles. Thus,

$$\theta + \theta_1 = \theta_2$$

So,
$$\theta = \theta_2 - \theta_1$$
 where $\theta_1 < \theta_2$.

Using the formula for the formula of the difference of two angles, we get

$$\theta = \theta_2 - \theta_1$$

$$\tan \theta = \tan(\theta_2 - \theta_1)$$

$$= \frac{\tan \theta_2 - \tan \theta_1}{1 + \tan \theta_1 \tan \theta_2}$$
This is from the formula for $\tan(u - v)$

Since $m = \tan \theta$, we end up with the following formula:

Angle Between Two Lines

If two nonperpendicular lines have slopes m_1 and m_2 , the angle between the two lines is

$$\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2}$$

*<u>Note</u>: The reason that we use the absolute value brackets is because the angle we are finding is acute, which means its tangent must be positive. **Example:** Find the angle between the lines given by <u>line 1</u>: 3x + 2y = 8 and <u>line 2</u>: 4x - 5y = 1.

<u>Solution</u>: Line 1: $y = -\frac{3}{2}x + 4$ $m_1 = -\frac{3}{2}$ Line 2: $y = \frac{4}{5}x - \frac{1}{5}$ $m_2 = \frac{4}{5}$

Use the formula: $\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$

$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| = \left| \frac{\frac{4}{5} - \frac{-3}{2}}{1 + \left(\frac{4}{5}\right)\left(\frac{-3}{2}\right)} \right| = \left| \frac{\frac{23}{10}}{\frac{-1}{5}} \right| = \frac{23}{2}$$

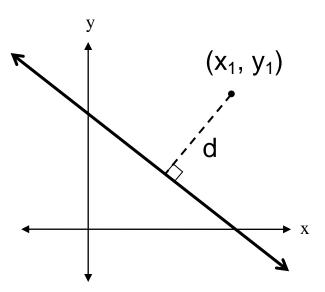
So, if
$$\tan \theta = \frac{23}{2}$$
, then

$$\theta = \tan^{-1} \left(\frac{23}{2} \right)$$

 $\theta \approx 1.484 \text{ radians or } 85^{\circ}$

The Distance Between a Point and a Line

Finding the distance from a point to a line is finding the length of the perpendicular segment that joins the point to the line.



Distance Between a Point and a Line

The distance between the point (x_1, y_1) and the line Ax + By + C = 0 is

$$d = \frac{\left|Ax_1 + By_1 + C\right|}{\sqrt{A^2 + B^2}}$$

Example: Find the distance between the point (2, 3) and the line given by x - 4y = 1.

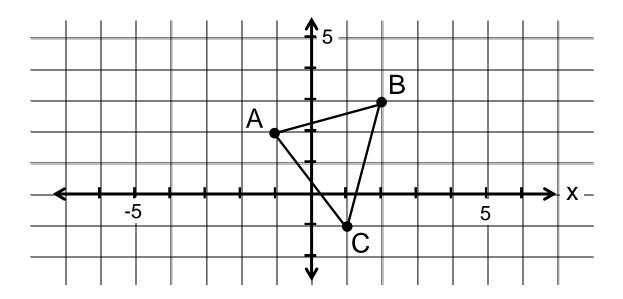
<u>Solution</u>: Put the equation in the form Ax + By + C = 0.

$$x - 4y - 1 = 0$$

Find the distance using the formula:

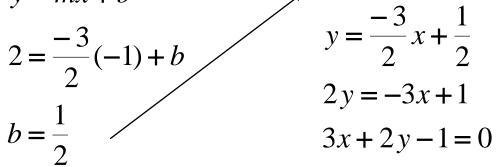
$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$
$$d = \frac{|1(2) - 4(3) - 1|}{\sqrt{1^2 + (-4)^2}}$$
$$d = \frac{|2 - 12 - 1|}{\sqrt{1 + 16}}$$
$$d = \frac{11}{\sqrt{17}} = \frac{11\sqrt{17}}{17} \approx 2.67$$

Example: For the triangle with vertices A(-1, 2), B(2, 3), and C(1, -1), find **a**) the altitude, and **b**) the area of the triangle.



a) We will find the distance from *B* to the line *AC*. First find the equation of the line *AC*.

 $m = \frac{2 - (-1)}{-1 - 1} = \frac{3}{-2} = -\frac{3}{2}$ Use this and one of the points in y = mx + b. y = mx + b y = mx + b



Now, using the equation and point B, find the distance from the point B to the line AC. This is the altitude.

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

$$d = \frac{|3(2) + 2(3) - 1|}{\sqrt{3^2 + 2^2}}$$

$$d = \frac{|6 - 6 - 1|}{\sqrt{9 + 4}}$$

$$d = \frac{1}{\sqrt{13}} = \frac{\sqrt{13}}{13}$$

The altitude is $\frac{\sqrt{13}}{13}$.

b) To find the area, we will need to know the length of AC. To do this, use the points A(-1, 2) and C(1, -1) in the distance formula.

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$d = \sqrt{(-1 - 1)^2 + (2 - (-1))^2}$$

$$d = \sqrt{(-2)^2 + (3)^2}$$

$$d = \sqrt{13}$$

So, AC = $\sqrt{13}$.

Now find the area of the triangle.

The formula for the area of a triangle is $A = \frac{1}{2}bh$.

$$A = \frac{1}{2}bh.$$
$$A = \frac{1}{2}(\sqrt{13})\left(\frac{\sqrt{13}}{13}\right)$$
$$A = \frac{1}{2}$$
 square units.