Ellipses

The second type of conic is called an ellipse.

Definition of Ellipse

An <u>ellipse</u> is the set of all points (x, y) in a plane, the sum of whose distances from two distinct fixed points (**foci**) is constant.

 $d_1 + d_2$ is a constant.

There are a number of parts of an ellipse that should be noted:

- The midpoint between the foci is the <u>center</u>.
- The line segment through the foci, with endpoints on the ellipses, is the <u>major axis</u>.
- The endpoints of the major axis are the <u>vertices</u> of the ellipse.
- The line segment through the center and perpendicular to the major axis, with endpoints on the ellipse, is the <u>minor axis</u>.
- The endpoints of the minor axis are the <u>covertices</u> of the ellipse.

There are 3 distances that are important when studying an ellipse.

a is always the longest length and c is always the focal length

Standard Equation of an Ellipse

The standard form of the equation of an ellipse centered at (h, k), with major axis of length 2a, minor axis of length 2b, where 0 < b < a, is

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

 $\frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{a^2} = 1$

Major axis is horizontal

Major axis is vertical

The foci lie on the major axis, *c* units from the center, with $c^2 = a^2 - b^2$. If the center is at the origin (0, 0), the equation takes one of the following forms.

Example: Find the center, vertices, and foci of the ellipse given by $9x^2 + 4y^2 = 36$.

Solution: First divide through by 36 to get the correct form.

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

Remembering that the larger number on the bottom corresponds to *a*, we can see that:

$$b^2 = 4$$
 so $b = 2$
 $a^2 = 9$ so $a = 3$

Using $c^2 = a^2 - b^2$, we can find c.

$$c^{2} = 3^{2} - 2^{2}$$
$$c^{2} = 5$$
$$c = \sqrt{5}$$

The center of the ellipse is (0, 0). From that point:

- We go 3 units up and down for the vertices: (0,3), (0,-3)
- We go 2 units right and left for covertices: (2, 0), (-2, 0)
- We go $\sqrt{5}$ units up and down for the foci: $(0, \sqrt{5})$, $(0, -\sqrt{5})$

5

- **Example:** Find the standard form of the equation of the ellipse centered at the origin with major axis of length 10 and foci at $(\pm 3, 0)$.
- <u>Solution</u>: If the major axis is 10, we know that a = 5. If the foci are at (±3, 0), we know that c = 3. Solve for b.

$$c2 = a2 - b2$$
$$32 = 52 - b2$$
$$b2 = 16$$
$$b = 4$$

Since the foci always lie on the major axis, we know that the major axis is horizontal. That tells us that a^2 goes under the x^2 term. Since it is centered at the origin, we have:

7

Example: Find the standard form of the equation of the ellipse with foci (0, 0) and (0, 4) with major axis of length of 8.

<u>Solution</u>: If the major axis is 8, we know that a = 4. If the foci are at (0, 0) and (0, 4), we know that c is half the distance between them so c = 2. Solve for b.

$$c^{2} = a^{2} - b^{2}$$
$$2^{2} = 4^{2} - b^{2}$$
$$b^{2} = 12$$
$$b = 2\sqrt{3}$$

Since the foci always lie on the major axis, we know that the major axis is vertical. That tells us that a^2 goes under the y^2 term. The center is half way between the foci, so the center must be (0, 2). Thus we have

$$\frac{(x-0)^2}{12} + \frac{(y-2)^2}{16} = 1$$

Example: Sketch the graph of $x^2 + 4y^2 + 6x - 8y + 9 = 0$.

<u>Solution</u>: You need to complete the square with the *x*-terms and the *y*-terms.

$$x^2 + 4y^2 + 6x - 8y + 9 = 0$$

*Get the constant on the other side and group the *x*-terms together and the *y*-terms terms, putting in blanks on both sides of the equation.

$$(x^{2} + 6x + _) + (4y^{2} - 8y + _) = -9 + _ + _$$

*Before completing the square, pull the 4 out of the y group.

$$(x^{2} + 6x + _) + 4(y^{2} - 2y + _) = -9 + _ + _$$

*Complete the squares.

$$(x^{2} + 6x + 9) + 4(y^{2} - 2y + 1) = -9 + 9 + 4$$

*Remember to add 4(1) on the right for the y group.

$$(x+3)^2 + 4(y-1)^2 = 4$$

*Because we need a 1 on the right, divide through by 4.

$$\frac{(x+3)^2}{4} + \frac{4(y-1)^2}{4} = \frac{4}{4}$$
$$\frac{(x+3)^2}{4} + \frac{(y-1)^2}{1} = 1$$

<u>center</u>: (-3, 1) <u>major axis</u>: horizontal and a = 2<u>minor axis</u>: vertical and b = 1

Example: Find the center, vertices, and foci of the ellipse $16x^2 + 9y^2 - 96x + 36y + 36 = 0$

<u>Solution</u>: Put the equation in standard form by completing the squares.

$$16x^{2} + 9y^{2} - 96x + 36y + 36 = 0$$

$$(16x^{2} - 96x + _) + (9y^{2} + 36y + _) = -36 + _ + _$$

$$16(x^{2} - 6x + _) + 9(y^{2} + 4y + _) = -36 + _ + _$$

$$16(x^{2} - 6x + 9) + 9(y^{2} + 4y + 4) = -36 + 144 + 36$$

$$16(x - 3)^{2} + 9(y + 2)^{2} = 144$$

$$\frac{16(x - 3)^{2}}{144} + \frac{9(y + 2)^{2}}{144} = \frac{144}{144}$$

$$\frac{(x - 3)^{2}}{9} + \frac{(y + 2)^{2}}{16} = 1$$

<u>center</u>: (3, -2) <u>major axis</u>: vertical and a = 4<u>minor axis</u>: horizontal and b = 3Find the foci by first finding c. $c^2 = a^2 - b^2$ $c^2 = 4^2 - 3^2$ $c^2 = 7$ $c = \sqrt{7}$

The foci are $\sqrt{7}$ units above and below the center, so the coordinates would be (3, -2+ $\sqrt{7}$) and (3, -2- $\sqrt{7}$).

Eccentricity

To measure the ovalness of an ellipse, we use the concept of <u>eccentricity</u>.

Definition of Eccentricity

The <u>eccentricity</u> e of an ellipse is given by the ratio

$$e = \frac{c}{a}$$

*<u>Note</u>: Because *a* is always greater than *c*, the fraction $\frac{c}{a}$ will always be between 0 and 1.

• When c is close to a, that means the foci are close the the vertices and the fraction $\frac{c}{-}$ is close to 1.

• When c is much smaller than a, that means the foci are close to the center and the fraction $\frac{c}{a}$ is small.

Example: Find the eccentricity of the ellipse

$$\frac{(x+5)^2}{9} + \frac{(y-1)^2}{25} = 1$$

Solution: Find *c*.

$$c^{2} = a^{2} - b^{2}$$

$$c^{2} = 5^{2} - 3^{2}$$

$$c^{2} = 16$$

$$c = 4$$
The eccentricity is $e = \frac{c}{a} = \frac{4}{5}$

Example: Find the eccentricity of the ellipse

$$\frac{(x-1)^2}{5} + \frac{(y+7)^2}{4} = 1$$

$$c^2 = a^2 - b^2 \qquad e = \frac{c}{a}$$

$$c^2 = 5 - 4 \qquad \text{so} \qquad e = \frac{1}{\sqrt{5}}$$

$$c = 1 \qquad e = \frac{\sqrt{5}}{5}$$

Application

Example: A passageway in a house is to have straight sides and a semielliptically-arched top. The straight sides are 5 feet tall and the passageway is 7 feet tall at its center and 6 feet wide. Where should the foci be located to make the template for the arch?

a = 3 and b = 2. Find c.

$$c^{2} = a^{2} - b^{2}$$

$$c^{2} = 3^{2} - 2^{2}$$

$$c^{2} = 5$$

$$c = \sqrt{5} \approx 2.236$$

The foci should be placed 2.236 feet to the right and left of the center of the semiellipse.