Graphs of Polar Equations

To begin graphing in the polar coordinate system we will start with plotting points.

Look at the polar equation $r = 4 \sin \theta$. Make a table.

<u>Symmetry</u>

Just as symmetry helps us to graph equations in rectangular form, it also helps us to graph in polar form.

The graph above shows symmetry with respect to the *y*-axis. But in polar coordinates the *y*-axis is the line $\theta = \frac{\pi}{2}$.

In general, we have 3 types of symmetry for polar graphs.

Tests for Symmetry in Polar Coordinates

The graph of a polar equation is symmetric with respect to the following if the given substitution yields an equivalent equation.

1. The line $\theta = \frac{\pi}{2}$:Replace (r, θ) with $(r, \pi - \theta)$
or $(-r, -\theta)$ 2. The polar axis:Replace (r, θ) with $(r, -\theta)$
or $(-r, \pi - \theta)$ 3. The pole:Replace (r, θ) with $(r, \pi + \theta)$
or $(-r, \theta)$

You will have to refer back to the sum and difference formulas from chapter 5:

$$\sin(u+v) = \sin u \cos v + \cos u \sin v$$
$$\sin(u-v) = \sin u \cos v - \cos u \sin v$$
$$\cos(u+v) = \cos u \cos v - \sin u \sin v$$
$$\cos(u-v) = \cos u \cos v + \sin u \sin v$$
$$\tan(u+v) = \frac{\tan u + \tan v}{1 - \tan u \tan v}$$
$$\tan(u-v) = \frac{\tan u - \tan v}{1 + \tan u \tan v}$$

You may also need to refer back to the Odd/Even identities of chapter 4:

$$cos(-\theta) = cos(\theta) \qquad sec(-\theta) = sec(\theta)$$

$$sin(-\theta) = -sin(\theta) \qquad csc(-\theta) = -csc(\theta)$$

$$tan(-\theta) = -tan(\theta) \qquad cot(-\theta) = -cot(\theta)$$

Example: Describe the symmetry of the polar equation $r = 2(1 - \sin \theta)$.

Solution: Test for each type of symmetry.

1. The line
$$\theta = \frac{\pi}{2}$$
: Replace (r, θ) with $(r, \pi - \theta)$ or
 $(-r, -\theta)$. Let's pick $(r, \pi - \theta)$.
 $r = 2(1 - \sin \theta)$
 $r = 2(1 - \sin(\pi - \theta))$

Use the sum and difference formula for sine to see if $\sin \theta = \sin(\pi - \theta)$.

$$\sin(u - v) = \sin u \cos v - \cos u \sin v$$

$$\sin(\pi - \theta) = \sin \pi \cos \theta - \cos \pi \sin \theta$$

$$\sin(\pi - \theta) = (0) \cos \theta - (-1) \sin \theta$$

$$\sin(\pi - \theta) = \sin \theta$$

So, $r = 2(1 - \sin(\pi - \theta)) = 2(1 - \sin \theta).$

*<u>Note</u>: To see if $\sin \theta = \sin(\pi - \theta)$, you can think through this intuitively as well. Give yourself an example.

Does
$$\sin\frac{\pi}{6} = \sin\left(\pi - \frac{\pi}{6}\right)$$
?

$$\sin\frac{\pi}{6} = \frac{1}{2}$$
$$\sin\left(\pi - \frac{\pi}{6}\right) = \sin\frac{5\pi}{6} = \frac{1}{2}$$

The answer is <u>yes</u>. They are the same.

The graph <u>is</u> symmetric to the line $\theta = \frac{\pi}{2}$. We don't have to check $(r, \pi - \theta)$.

2. The polar axis: Replace (r, θ) with $(r, -\theta)$ or $(-r, \pi - \theta)$. Let's pick $(r, -\theta)$. $r = 2(1 - \sin \theta)$

$$r = 2(1 - \sin(-\theta))$$

Referring to the odd/even identities above, we see that $\sin(-\theta) = -\sin\theta$. Therefore, $\sin(-\theta) \neq \sin\theta$, we do <u>not</u> get an equivalent equation.

*<u>Note</u>: We can think through this intuitively also.

Does $\sin \theta = \sin(-\theta)$? For example, does $\sin \frac{\pi}{4} = \sin \frac{-\pi}{4}$?

The answer is <u>no</u>. Therefore, replacing (r, θ) with $(r, -\theta)$ does <u>not</u> give us an equivalent equation.

**The polar axis*: What if we chose $(-r, \pi - \theta)$ instead?

$$r = 2(1 - \sin \theta)$$
$$-r = 2(1 - \sin(\pi - \theta))$$

We know from above, that $\sin \theta = \sin(\pi - \theta)$, so we get $-r = 2(1 - \sin \theta)$

This is *not* an equivalent equation.

3. *The pole*: Replace (r, θ) with $(r, \pi + \theta)$ or $(-r, \theta)$.

```
Let's choose (-r, \theta).
```

$$r = 2(1 - \sin \theta)$$
$$-r = 2(1 - \sin \theta)$$

This does *not* give us an equivalent equation either.

*<u>Note</u>: Polar graph can exhibit symmetry even when the tests *fail* to indicate symmetry. The test will show if symmetry does exists, but it can not conclusively prove that symmetry *does not* exist.

Quick Tests for symmetry:

1. The graph of $r = f(\sin \theta)$ is symmetric with respect to

the line $\theta = \frac{\pi}{2}$.

- 2. The graph of $r = g(\cos \theta)$ is symmetric with respect to the polar axis.
- *You may use the quick tests to find one symmetry, but you must use the tests to determine the other 2 symmetries.

Example: Use symmetry to graph the equation $r = 2 - 2\cos\theta$.

<u>Solution</u>: Because this equation is a function of cosine, we know there is symmetry with respect to the polar axis. Make a table and draw the graph.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	π	2π
r	0	≈0.3	≈0.6	2	3	≈3.4	4	0

 $y = 2 - 2\cos\theta$

This graph is called a limaçon.

Zeros and Maximum r-Values

Two other values will help us in our graphing:

- points at which |r| is maximum
- points at which r = 0.

Example: Consider the equation $r = 1 - 2\cos\theta$.

> Where will |r| be at a maximum?

- $\cos\theta$ is the largest at $\theta = 0$ ($\cos \theta = 1$).
- $\cos\theta$ is the smallest at $\theta = \pi \ (\cos\pi = -1)$.

When $\cos 0 = 1$, then $r = 1 - 2\cos\theta$ $= 1 - 2\cos\theta$ = 1 - 2(1) = -1 |r| = 1When $\cos \pi = -1$, then $r = 1 - 2\cos\theta$ $= 1 - 2\cos\pi$ = 1 - 2(-1) = 3 |r| = 3

Therefore, the max for |r| happens when $\theta = \pi$.

> What are the zeros of the equation?

To find the zeros, let r = 0 and solve.

Since the equation is a function of cosine, we know we have symmetry with respect to the polar axis. That means we can look at the values of $0 \le \theta \le \pi$ and then reflect them over the polar axis.

This is also a limaçon.

Example: Describe the zeros and maximum *r*-values of the polar equation $r = 5\cos 2\theta$.

> Points where |r| is maximum.

Since $-1 \le \cos 2\theta \le 1$, the maximum for |r| will be:

$r = 5\cos 2\theta$		$r = 5\cos 2\theta$
r = 5(1)		r = 5(-1)
<i>r</i> = 5	Or	r = -5
r = 5		r = 5

Therefore, the maximum value of |r| is 5, and it occurs when

$r = 5\cos 2\theta$		$r = 5\cos 2\theta$
$5 = 5\cos 2\theta$		$-5 = 5\cos 2\theta$
$\cos 2\theta = 1$	or	$\cos 2\theta = -1$
$2\theta = 0, 2\pi, 4\pi, 6\pi$		$2\theta = \pi, 3\pi, 5\pi, 7\pi$
$\theta = 0, \pi, 2\pi, 3\pi, \dots$		$\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$

Since cosine is a periodic function, we only need to consider the values from 0 to 2π . Thus our maximum occurs when $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$.

The zeros of the equation. Set r = 0 and solve for θ .

$$r = 5\cos 2\theta$$

$$0 = 5\cos 2\theta$$

$$0 = \cos 2\theta$$

$$\cos 2\theta = 0$$

$$2\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{9\pi}{2}, \dots$$

$$\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \frac{9\pi}{4}, \dots$$

Again, we only need to consider the values from 0 to 2π . Thus our zeros occur when $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$

The graph of $r = 5\cos 2\theta$ is:

Sketching a Polar Graph

Example: Sketch the graph of $r = 1 - \sin \theta$. <u>Solution</u>:

- 1. <u>Symmetry</u>: With respect to the line $\theta = \frac{\pi}{2}$.
- 2. <u>Maximum</u>: The max of |r| will happen when $\sin \theta = \pm 1$.

$$r = 1 - \sin \theta$$
 $r = 1 - \sin \theta$
 $r = 1 - (1) = 0 = 0$ or $r = 1 - (-1) = 2$

The max value for r is 2 and happens when $\sin \theta = -1$. This happens when $\theta = \frac{3\pi}{2}$.

3. <u>Zeros</u>: Let r = 0 and solve.

$$r = 1 - \sin \theta$$
$$0 = 1 - \sin \theta$$
$$\sin \theta = 1$$
$$\theta = \frac{\pi}{2}$$

4. Sketch the graph in intervals. Make a table if needed.

<u>Hint</u>: Use the TABLE feature of your calculator for table values. At the TABLSET screen, choose "Ask" for the independent variable.

- As θ goes from 0 to $\frac{\pi}{2}$, *r* goes from 1 to 0.
- As θ goes from $\frac{\pi}{2}$ to π , r goes from 0 to 1.
- As θ goes from π to $\frac{3\pi}{2}$, r goes from 1 to 2.
- As θ goes from $\frac{3\pi}{2}$ to 2π , r goes from 2 to 1.

Sketch the graph.

Example: Sketch the graph of $r = \cos 2\theta$.

Solution:

- 1. <u>Symmetry</u>: With respect to the polar axis.
- 2. <u>Maximum</u>: Since the max of cosine is 1, |r| = 1. This happens when

$$\cos 2\theta = 1 \qquad \cos 2\theta = -1$$

$$2\theta = 0,2\pi, 4\pi, 6\pi, \dots \text{ or } \qquad 2\theta = \pi, 3\pi, 5\pi, 6\pi, \dots$$

$$\theta = 0, \pi \qquad \qquad \theta = \frac{\pi}{2}, \frac{3\pi}{2}$$

3. <u>Zeros</u>: Let r = 0 and solve.

$$0 = \cos 2\theta$$
$$2\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \dots$$
$$\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

4. Sketch the graph in intervals. Make a table if needed.

Table for $r = \cos 2\theta$.

- As θ goes from 0 to $\frac{\pi}{4}$, r goes from 1 to 0.
- As θ goes from $\frac{\pi}{4}$ to $\frac{\pi}{2}$, *r* goes from 0 to -1.
- As θ goes from $\frac{\pi}{2}$ to $\frac{3\pi}{4}$, r goes from -1 to 0.
- As θ goes from $\frac{3\pi}{4}$ to π , r goes from 0 to 1.
- As θ goes from π to $\frac{5\pi}{4}$, r goes from 1 to 0.

- As θ goes from $\frac{5\pi}{4}$ to $\frac{3\pi}{2}$, r goes from 0 to -1.
- As θ goes from $\frac{3\pi}{2}$ to $\frac{7\pi}{4}$, r goes from -1 to 0.
- As θ goes from $\frac{7\pi}{4}$ to 2π , r goes from 0 to 1.

Graphing Polar Equations using a Graphing Calculator

- Change the mode to Polar by pressing [MODE] and on the 4th line highlight [Pol].
- Press [Y=] to see the equation editor for polar equations. Enter your equation and press [GRAPH].
- 3. If the graph does not fit in the window, press [ZOOM] [ZoomFit].

Special Polar Graphs

Look at the special polar graphs on page 760.

