Logarithmic Functions and Their Graphs

Look at the graph of $f(x) = 2^x$

Does this graph pass the Horizontal Line Test?

yes

What does this mean?

that its inverse is a function

Find the inverse of $y = a^x$. (switch x and y and solve for y)

$$y = a^{x}$$

 $x = a^{y}$

*We don't know how to solve for y!!!

Definition: The function given by $f(x) = \log_a x$, where x > 0, a > 0, and $a \neq 1$, is called <u>the logarithmic function with base</u> <u>a</u>. It is the inverse of the exponential function $f(x) = a^x$.

*Thus, $y = \log_a x$ is equivalent $x = a^y$.

(They both name the inverse of $y = a^{x}$.)

<u>Working definition</u>: The log of a number is the exponent that you put on the base to get that number. (<u>Memorize this</u>!)

**<u>Remember</u>: The logarithm is an exponent.

Examples: Solve.

- (a) $\log_2 32 = y$ (b) $y = \log_3 1$
 - $2^{y} = 32$ y = 5 $3^{y} = 1$ y = 0

(c)
$$y = \log_{10} \frac{1}{100}$$

$$10^{y} = \frac{1}{100} \longrightarrow 10^{y} = 10^{-2} \longrightarrow y = -2$$

(d) $y = \log_4 2$ (e) Evaluate $f(x) = \log_2 x$ for x=8 $4^y = 2$ $f(8) = \log_2 8$ $(2^2)^y = 2$ $y = \log_2 8$ $2^{2y} = 2$ $2^y = 8$ 2y = 1 y = 3 $y = \frac{1}{2}$

- (f) Evaluate $\log_2 0.25$ (g) Evaluate $\log_3 81$
- $2^{y} = 0.25$ $2^{y} = \frac{1}{4}$ $3^{y} = 81$ $3^{y} = 3^{4}$ $2^{y} = \frac{1}{2^{2}}$ y = 4y = -2
- **To find the log of a number, write it in exponential form, get the bases the same, and the set the exponents equal and solve.

Common Logarithms

Because we are working in a base 10 number system, we call the logarithmic function with base 10 the <u>common</u> <u>logarithmic function</u>. This is the function that corresponds to the LOG button on our calculators. The common logarithmic function is one function for which we need not write the base.

Examples: Find the following:

(a)
$$\log 10$$
 (b) $\log \frac{1}{4}$ (c) $\log 3.5$ (d) $\log(-2)$
1 ≈ -0.602 ≈ 0.544 Error
"NONREAL ANS"
Note: $10^{y} = -2$ will **never** happen.

Graphing Logarithmic Functions

On your calculator, graph $y = 10^{x}$ $y = \log x$ y = x

*<u>Notice</u> that for y = log x, we don't use any x-values to the left of zero. That is why we could not put in -2 for x in the example, because -2 is not in the domain of y = log x.

Basic Characteristics of Logarithmic Graphs $f(x) = \log_a x$

- 1. The domain is $(0, \infty)$.
- 2. The range is $(-\infty,\infty)$.
- 3. The x-intercept is (1, 0).
- 4. The y-axis is a vertical asymptote.
- 5. The function is increasing (a > 0).
- 6. The function is continuous.
- 7. The function passes the Horizontal Line test (ie. it is one-to-one) so it has an inverse function.
- 8. The function is a reflection of $y = a^x$ over the line y=x.

Rigid Transformations

Graph the following:

$$y = \log x$$

$$y = \log(x+2)$$

$$y = \log(x) - 1$$

What kind of transformations do we have?

y = log(x+2) is y=log x shifted 2 units to the left. y = log(x) - 1 is y = log x shifted 1 unit down.

What would $y = \log(x+3) + 7$ look like?

y=log(x+3) + 7 would be y = log x shifted 3 units left and 7 units up.

Properties of Logarithms

1.
$$\log_a 1 = 0$$

2. $\log_a a = 1$
3. $\log_a a^x = x$ and $a^{\log_a x} = x$
4. If $\log_a x = \log_a y$, then $x = y$.

Examples: Solve the following equations:

(a) $\log_5 x = \log_5 8$ (b) $\log_5 1 = x$

c) $\log_7 x = 1$

$$7^{1} = x$$
$$x = 7$$

Examples: Simplify the following:

(a) $\log_6 6^x$ (b) $5^{\log_5 20}$ $6^n = 6^x$ $5^{\log_5 20} = 20$ n = x

The Natural Logarithmic Function

Remember $f(x) = e^{x}$ (where $e \approx 2.72$)

The inverse would be $f(x) = \log_e x$.

Since this is used a great deal, we have a notation (and button on our calculator dedicated to it.

Definition: The logarithmic function with base *e* is denoted

 $f(x) = \ln x$

*Remember that In x is just log.x.

Properties of Natural Logarithms

5. $\ln 1 = 0$ 6. $\ln e = 1$ 7. $\ln e^{x} = x$ and $e^{\ln x} = x$ 8. If $\ln x = \ln y$, then x = y.

Examples: Evaluate the following: *e*

(a) $\ln e^5$ (b) $e^{\ln 3}$ (c) $\ln \frac{1}{e^2}$ 5 3 $\ln e^{-2} = -2$

Examples: Use your calculator to find the following.

(a) In 3	(b) In 0.2	(c) In (-1)	(d) In(1+√5)
≈1.099	≈ -1.609	Error	≈1.174

*Look at the graph of $y = \ln x$. Just as with $y = \log_x a$, we <u>cannot</u> take the log of a negative number.

Finding the Domain of the Logarithmic Function

The domain of $f(x) = \log x$ and $f(x) = \ln x$ is $(0, \infty)$

(a) What is the domain of f(x) = log(x+2)?

We must have x+2 > 0 since what we take the log of must <u>not</u> be negative.

Solving x+2 > 0 we get x > -2, so the domain is $(-2, \infty)$.

*<u>Note</u>: This makes sense, because we know that $f(x) = \log (x+2)$ is $f(x) = \log x$ shifted 2 units left.

The vertical asymptote of $f(x) = \log x$ is the y-axis (x=0). The vertical asymptote of $f(x) = \log(x+2)$ is x = -2.

(b) What is the domain of ln(3 - x)?

We must have
$$3 - x > 0$$

-x > -3
x < 3, so the domain is (- ∞ , 3)

(c) What is the domain of $\ln x^2$?

 $x^2 > 0$, which means x > 0 or x < 0 (ie. x can be anything but 0) So the domain is (- ∞ , 0) \cup (0, ∞)

