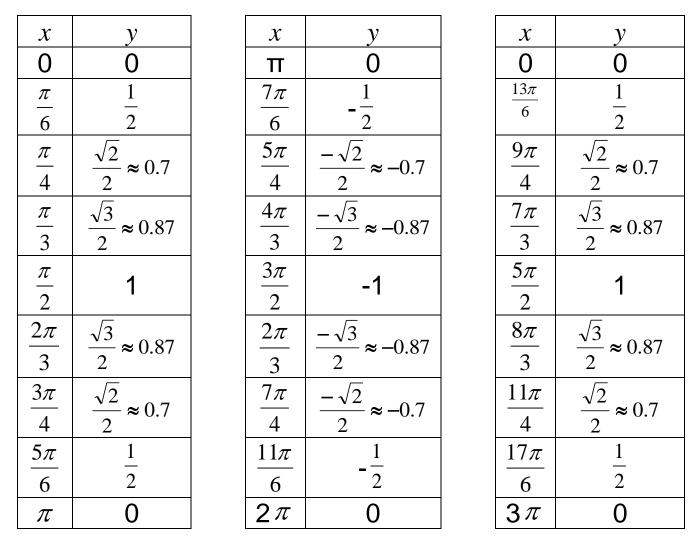
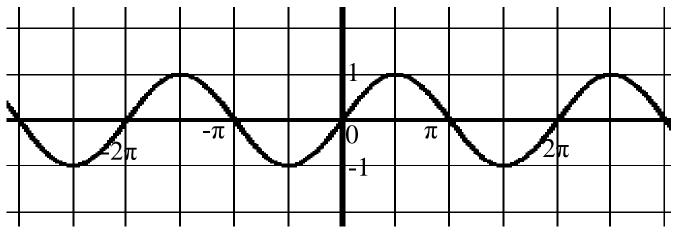
Graphs of Sine and Cosine Functions

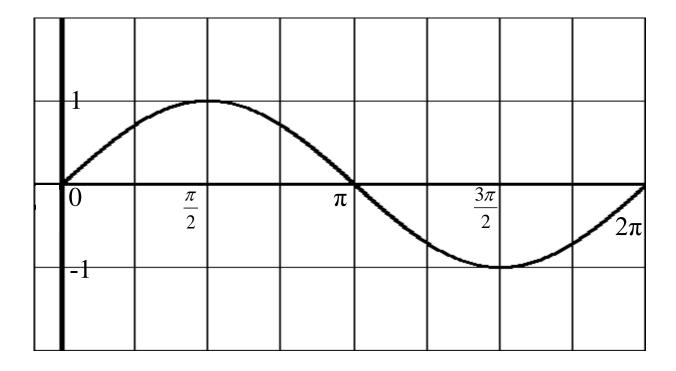
Graph $y = \sin x$. This is the same as $y = \sin(x)$





The <u>Domain</u> of $y=\sin x$ is the set of all real numbers. The <u>Range</u> of $y = \sin x$ is $-1 \le y \le 1$.

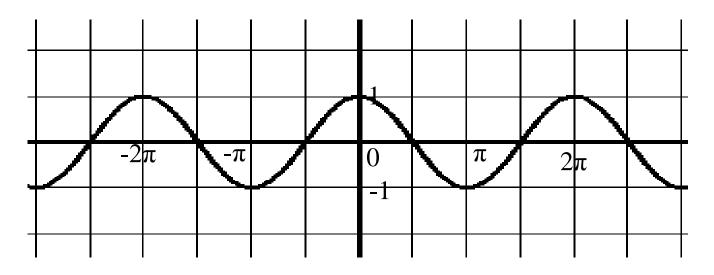
The portion of the graph of $y = \sin x$ that includes one period is called one <u>cycle</u> of the sine curve.



Every period of the sine curve has **5 key points**: the intercepts and a minimum and maximum point.

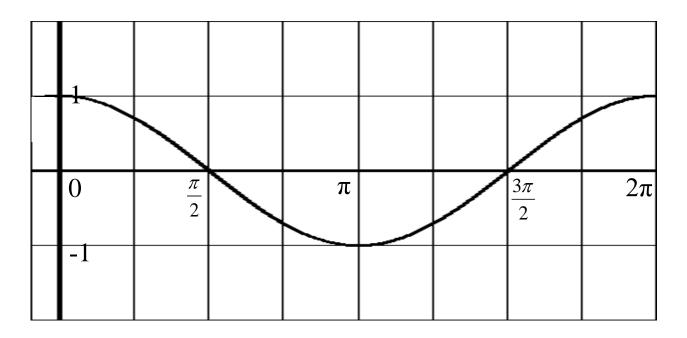
For one period of the sine curve, the *x*-intercepts occur at (0, 0), (π , 0), and (2π , 0). The maximum point is ($\frac{\pi}{2}$, 1) and the minimum point is ($\frac{3\pi}{2}$, -1).

Graph $y = \cos x$.



The <u>Domain</u> of $y = \cos x$ is the set of all real numbers. The <u>Range</u> of $y = \cos x$ is $-1 \le y \le 1$.

The portion of the graph of $y = \cos x$ that includes one period is called one <u>cycle</u> of the cosine curve.



Every period of the cosine curve has **5 key points**: the intercepts and a minimum and maximum point.

For one period of the sine curve, the *x*-intercepts occur at $(\frac{\pi}{2}, 0)$, and $(\frac{3\pi}{2}, 0)$. The maximum point is (0, 1) and (2 π , 0) and the minimum point is (π , -1).

**Both sine and cosine curves have a period of 2π . We consider the interval from 0 to 2π as the basic cycle.

Amplitude

On a graphing calculator, graph $y = \sin x$ $y = 2\sin x$

 $y = 2\sin x$ $y = 5\sin x$ $y = \frac{1}{2}\sin x$

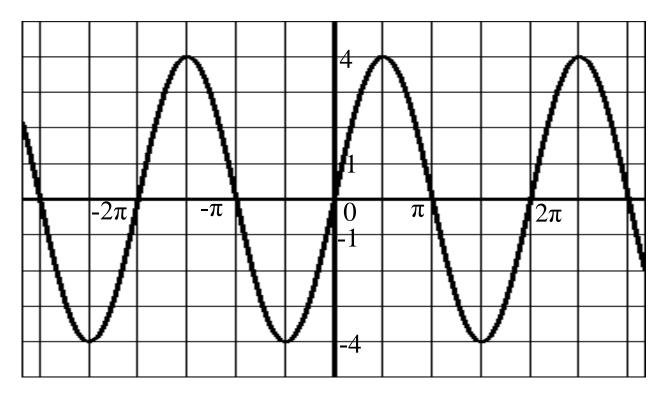
What can you conclude?

As the number being multiplied out front increases, the graph of y = sin x stretches vertically.

Definition: The amplitude of $y = a \sin x$ and $y = a \cos x$ represents half the distance between the maximum and minimum values of the function and is given by Amplitude = |a|. *<u>Note</u>: Just as with functions already studied, if *a* is a negative number, the graph of the function will be reflected over the x-axis.

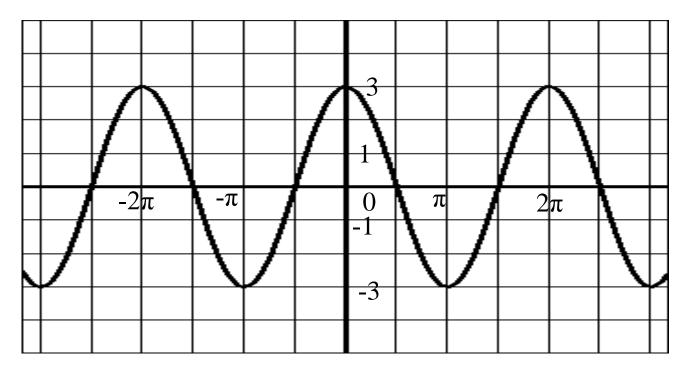
The amplitude of $y = \sin x$ is 1. The amplitude of $y = 2 \sin x$ is 2. The amplitude of $y = 5 \sin x$ is 5. The amplitude of $y = \frac{1}{2} \sin x$ is $\frac{1}{2}$. The amplitude of $y = -13 \sin x$ is 13. (*not*-13)

Graph $y = 4 \sin x$

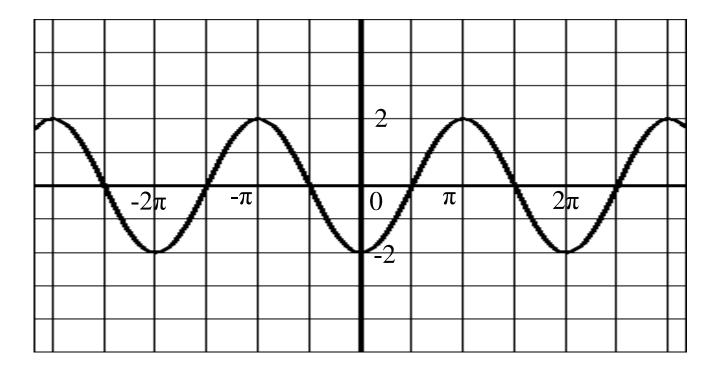


The period remains the same, but the amplitude changes.

Graph $y = 3 \cos x$



Graph $y = -2 \cos x$



Changing the Period of Sine and Cosine

On a graphing calculator graph: $y = \sin x$ $y = \sin 2x$

What do you notice?

The length of one cycle is half as long for y = sin 2x.

Definition: Let b be a positive real number. The period of $y = a \sin bx$ and $y = a \cos bx \operatorname{is} 2\pi/b$.

Example: Find the period of $y = \cos 6x$.

The period =
$$\frac{2\pi}{b} = \frac{2\pi}{6} = \frac{\pi}{3}$$

Example: Find the period of $y = \sin \frac{x}{5}$.

The period =
$$\frac{2\pi}{b} = \frac{2\pi}{\frac{1}{5}} = 2\pi \cdot \frac{5}{1} = 10\pi$$

Alternate Method of Finding the Period

For one cycle of $y = \sin x$ we have $0 \le x \le 2\pi$.

Another way to find the period of $y = \sin 2x$ is to put 2x between the 0 and 2π and solve for x in the middle.

For one period of $y = \sin 2x$ we have $0 \le 2x \le 2\pi$.

Divide through by 2.

$$\frac{0}{2} \le \frac{2x}{2} \le \frac{2\pi}{2}$$

We end up with $0 \le x \le \pi$ for the period of $y = \sin 2x$.

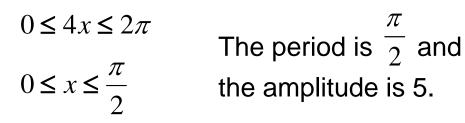
If we use the definition we get the period $=\frac{2\pi}{b}=\frac{2\pi}{2}=\pi$.

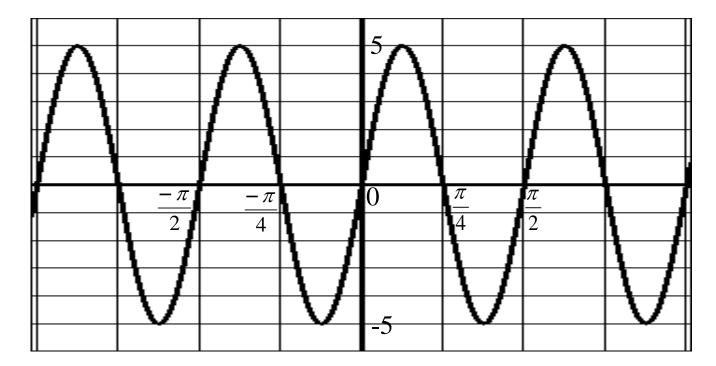
Example: Find the period of $y = \cos \frac{x}{4}$.

For cosine we have $0 \le x \le 2\pi$. Substitute $\frac{x}{4}$ for the x.

 $0 \le \frac{x}{4} \le 2\pi$ $0 \le x \le 8\pi$ The period is from 0 to 8π , which is 8π units.

Graph $y = 5 \sin 4x$.





Note: Once you know the basic shape of the sine and cosine curves, it is basically a matter of making adjustments to the axes labels.

Horizontal Translation of Sine and Cosine Curves

The constant in *c* in the equations $y = a \sin(bx-c)$ and $y = a \cos(bx-c)$ create a horizontal translation (shift) of the basic sine and cosine curves.

On a graphing calculator graph: $y = \sin x$

$$y = \sin\left(x + \frac{\pi}{2}\right)$$

What do you notice?

The graph is the same shape and size as y = sin x but it is shifted horizontally.

Example: Graph $y = cos(x - \frac{\pi}{2})$

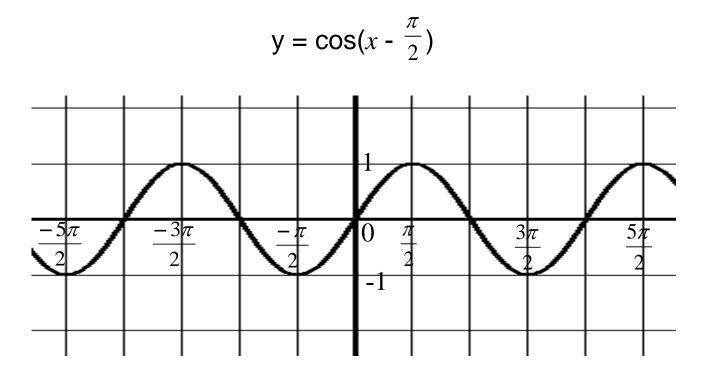
Because the period for cosine is from 0 to 2π , we take

$$0 \le x - \frac{\pi}{2} \le 2\pi$$

Add $\frac{\pi}{2}$ to all 3 parts of the inequality.

$$\frac{\pi}{2} \le x \le 2\pi + \frac{\pi}{2}$$
$$\frac{\pi}{2} \le x \le \frac{5\pi}{2}$$

This means that one period of our function goes from $\frac{\pi}{2}$ to $\frac{5\pi}{2}$ (which is 2π units long)



Example: Graph $y = 2\sin(4x + \pi)$

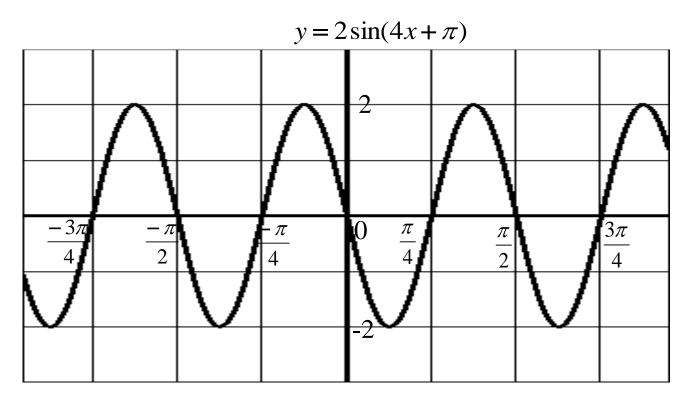
The amplitude is 2. The period is $\frac{2\pi}{b} = \frac{2\pi}{4} = \frac{\pi}{2}$

One period of sine goes from 0 to 2π , so we have

$$0 \le 4x + \pi \le 2\pi$$

$$-\pi \le 4x \le \pi$$
 One period goes from $\frac{-\pi}{4}$ to $\frac{\pi}{4}$

$$\frac{-\pi}{4} \le x \le \frac{\pi}{4}$$
 (This is $\frac{\pi}{2}$ units long.)



Vertical Translations

On a graphing calculator graph: $y = \sin x$ $y = 2 + \sin x$

What do you notice?

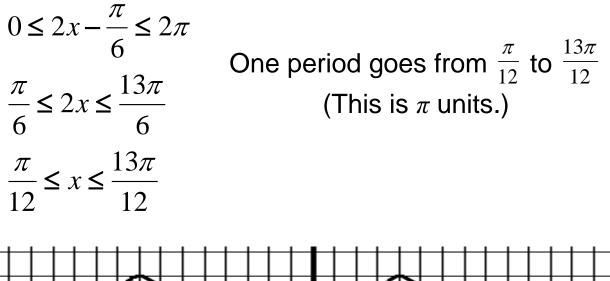
The graph is the same shape and size as y = sin x but it is shifted vertically 2 units up.

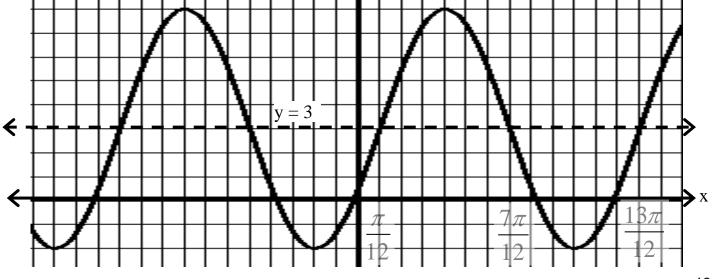
Example : Graph $y = 3 + 5\sin(2x - \frac{\pi}{6})$

• The <u>amplitude</u> is 5.

• The period is
$$\frac{2\pi}{b} = \frac{2\pi}{2} = \pi$$

- We have a <u>vertical shift</u> of 3 units up, so draw the line y=3 (dotted) as the graph will oscillate around that line instead of the *x*-axis.
- Find the <u>horizontal shift</u>. Since it is the sine curve we have





Example : Graph $y = 1 - \frac{1}{2} \sin(\frac{1}{2}x - \pi)$

- The <u>amplitude</u> is $\frac{1}{2}$.
- Because there is a negative before the $\frac{1}{2}$, the graph is up-side-down (reflected over the x-axis.)

• The period is
$$\frac{2\pi}{b} = \frac{2\pi}{\frac{1}{2}} = 4\pi$$

- We have a <u>vertical shift</u> of 1 unit up, so draw the line y=1 (dotted) as the graph will oscillate around that line instead of the *x*-axis.
- Find the <u>horizontal shift</u>. Since it is the sine curve we have

