Graphs of Other Trig Functions

Graph $y = \tan x$.

The <u>Domain</u> is all real numbers except multiples of $\frac{\pi}{2}$. (We say the domain is all $x \neq \frac{\pi}{2} + n\pi$)

The <u>Range</u> is the set of all real numbers.

- The period for tangent is π .
- One cycle is $\frac{-\pi}{2} < x < \frac{\pi}{2}$. (Note that it's not \leq)
- There is no amplitude.
- One cycle goes from $\frac{-\pi}{2}$ to $\frac{\pi}{2}$.
- There is a vertical asymptote at $x = \frac{\pi}{2} + n\pi$ (at every x-value for which the tangent is undefined.)
- The Domain is all $x \neq \frac{\pi}{2} + n\pi$
- The Range is all real numbers.

Example : Graph $y = 3\tan\frac{x}{2}$

The period goes from $\frac{-\pi}{2}$ to $\frac{\pi}{2}$ so we have:

 $\frac{-\pi}{2} < \frac{x}{2} < \frac{\pi}{2}$ $-\pi < x < \pi$

One period will go from $-\pi$ to π , with asymptotes at $-\pi$ and π . There will be an x-intercept at 0 (half-way between $-\pi$ and π .)

With tangent, we need to put in at least one point between the x-intercept and asymptote to see how quickly the curve rises or falls.

When $x = \frac{\pi}{2}$, y = 3, so we have the point $(\frac{\pi}{2}, 3)$.

Graph of Cotangent

$$\cot x = \frac{\cos x}{\sin x}$$
 or $\cot x = \frac{1}{\tan x}$

Cotangent will be undefined when the sin x is 0, and this is where the asymptotes will be. Also, since it is the reciprocal function of tangent, every y coordinate in our table for tangent will become the reciprocal of that number for cotangent.

Example: If the point $(\pi, 4/7)$ is on a tangent graph, then $(\pi, 7/4)$ will be on the cotangent graph. If the point $(3\pi, 5)$ is on the tangent graph, then $(3\pi, 1/5)$ will be on the cotangent graph.

For $y = \cot x$

- The period for cotangent is π .
- One cycle is $0 < x < \pi$. (Note that it's not #)
- There is no amplitude.
- One cycle goes from 0 to π .
- There is a vertical asymptote at x = nπ
 (at every x-value for which the cotangent is undefined.)
- The Domain is all $x \neq n\pi$
- The Range is all real numbers.

Graphs of Secant and Cosecant

<u>Sine</u> and <u>Cosecant</u> functions are reciprocals. <u>Cosine</u> and <u>Secant</u> functions are reciprocals.

This means:

- Where one function is zero, its reciprocal function has a vertical asymptote.
- Where one function has a relative maximum, its reciprocal function has a relative minimum.
- Every *y*-coordinate for one function will become its reciprocal for the reciprocal function.
- **When graphing the secant or cosecant function, we first sketch its reciprocal function. Then take the reciprocals of the *y*-coordinates to obtain points on the graph.

Graph $y = \csc x$

- First graph $y = \sin x$.
- Draw in asymptotes where the $\sin x = 0$.
- Then take the reciprocals of the *y*-coordinates to obtain some points.

- The period for cosecant is π .
- One cycle is $0 < x < 2\pi$.
- There is no amplitude.
- One cycle goes from 0 to 2π .
- There is a vertical asymptote at x = nπ (at every *x*-value for which the sine is zero)
- The Domain is all $x \neq n\pi$
- The Range is all real numbers.

Graph $y = \sec x$

- First graph $y = \cos x$.
- Draw in asymptotes where the $\cos x = 0$.
- Then take the reciprocals of the *y*-coordinates to obtain some points.

- The period for secant is π .
- One cycle is $0 < x < 2\pi$.
- There is no amplitude.
- One cycle goes from 0 to 2π .
- There is a vertical asymptote at $x = \frac{\pi}{2} + n\pi$ (at every *x*-value for which the cosine is zero)

• The Domain is all
$$x \neq \frac{\pi}{2} + n\pi$$

• The Range is all real numbers.

Example : Graph $y = -2 \cot 2x$

One cycle for cotangent is $0 < x < \pi$, so

$$0 < 2x < \pi$$

 $0 < x < \frac{\pi}{2}$ This is one cycle of our graph.

There is an asymptote at every $\frac{\pi}{2}$ units starting at 0. The graph is "up-side-down" from the normal cotangent graph.

X	$\frac{\pi}{4}$	$\frac{\pi}{8}$	$\frac{3\pi}{8}$
у	0	-2	2

Example : Graph
$$y = 3\csc\frac{x}{2}$$

• $y = 3\left(\csc\frac{x}{2}\right)$ is the same as $y = 3\left(\frac{1}{\sin\frac{x}{2}}\right)$, so graph $y = 3\sin\frac{x}{2}$ first.

- amplitude = 3
- period = $\frac{2\pi}{\frac{1}{2}} = 4\pi$
- One cycle for sine is $0 \le x \le 2\pi$, so we have

•
$$0 \le \frac{x}{2} \le 2\pi$$

 $0 \le x \le 4\pi$ This is one cycle of our graph.

- Where the sine curve equals zero (crosses the x-axis), our cosecant curve has asymptotes.
- Put a couple of values into the table.

X	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
$3\sin\frac{x}{2}$	$3\left(\frac{\sqrt{2}}{2}\right) \approx 2.1$	3(1)=3	$3\left(\frac{\sqrt{2}}{2}\right) \approx 2.1$
$3\csc\frac{x}{2}$	$3\left(\frac{2}{\sqrt{2}}\right) \approx .4.2$	3(1)=3	$3\left(\frac{2}{\sqrt{2}}\right) \approx .4.2$

Example : Graph $y = -2\sec(4x + \pi) + 2$

•
$$y = -2 \sec(4x + \pi) + 2$$
 is the same as $y = -2\left(\frac{1}{\cos(4x + \pi)}\right) + 2$.
Graph $y = -2\cos(4x + \pi) + 2$ first.

- Graph reflected over x-axis (ie. up-side-down)
- period = $\frac{2\pi}{4} = \frac{\pi}{2}$
- One cycle for cosine is $0 \le x \le 2\pi$, so we have

$$0 \le 4x + \pi \le 2\pi$$

$$-\pi \le 4x \le \pi$$

$$\frac{-\pi}{4} \le x \le \frac{\pi}{4}$$

This is one cycle of our graph.

- Our graph is shifted 2 units up, so draw a dotted line at y = 2 to represent the line that our graph oscillates around.
- Where the cosine curve crosses the line y = 2, our secant curve has asymptotes.
- Sketch the graph.

***Look at the summary of the 6 basic trigonometric functions on page 317.

