Inverse Trig Functions

Because the sine function does not pass the Horizontal Line Test, we must restrict its domain in order for its inverse to be a function. We restrict the domain to $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

This is not one cycle of sine. It is a part of the cycle in which we have no y's repeating, so that it passes the Horizontal Line Test (ie. is one-to-one), and thus will have an inverse.

**Think of only using the values on the unit circle in the 1st and 4th quadrants, with all angle measures written as angles between $\frac{-\pi}{2}$ and $\frac{\pi}{2}$.

Remember that the inverse of a function is found by interchanging x and y and then solve for y.

Thus, for $y = \sin x$, the inverse is $x = \sin y$.

We cannot solve for y, so we define the function for this inverse as $y = \arcsin x$.

Definition: The <u>inverse sine function</u> can be denoted by

 $y = \arcsin x$ if and only if $x = \sin y$

where
$$-1 \le x \le 1$$
 and $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$.

It can be thought of as the angle whose sine is x.

<u>Note</u>: $y = \arcsin x \ can$ also be written $y = \sin^{-1} x$. (This is not the reciprocal of sin x.)

Examples: Find the exact values of the following.

a) $\sin^{-1}(-1)$ answer: $\frac{-\pi}{2}$ (not $\frac{3\pi}{2}$) b) $\arcsin\left(\frac{1}{2}\right)$ answer: $\frac{\pi}{6}$ c) $\arcsin(2)$ answer: There is no a

answer: There is no angle whose sine is 2.

Graph $y = \arcsin x$.

Make a table. Remember that $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$.

У	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	$\frac{-\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$
x	-1	$\frac{-\sqrt{2}}{2}$	$\frac{-1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	1

This graph is a reflection of the sine curve over the line y = x.

**Remember your restrictions on the domain and range for y = arcsin x.

Other Inverse Trig Functions

Look at the graph of $y = \cos x$.

The section of the cosine graph that we will consider for arccosine is from 0 to π .

Definition: The inverse cosine function can be denoted by

$$y = \arccos x$$
 if and only if $x = \cos y$

where $-1 \le x \le 1$ and $0 \le y \le \pi$.

It can be thought of as the angle whose cosine is x.

<u>Note</u>: $y = \arccos x \ can \ also \ be written \ y = \cos^{-1} x$. (This is not the reciprocal of $\cos x$.)

Graph $y = \arccos x$.

The section of the tangent graph that we will consider for arctangent is from $\frac{-\pi}{2}$ to $\frac{\pi}{2}$.

Definition: The inverse tangent function can be denoted by

 $y = \arctan x$ if and only if $x = \tan y$

where x is a real number and $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$.

It can be thought of as the angle whose tangent is x.

<u>Note</u>: $y = \arctan x \ can \ also \ be \ written \ y = \tan^{-1} x$. (This is not the reciprocal of tan x.)

Graph $y = \arctan x$.

In General,

Function	Domain	Range
$y = \arcsin x \leftrightarrow \sin y = x$	[-1, 1]	[- <i>π</i> /2, <i>π</i> /2]
$y = \arccos x \leftrightarrow \cos y = x$	[-1, 1]	[0, <i>π</i>]
$y = \arctan x \leftrightarrow \tan y = x$	[-∞,∞]	(- <i>π</i> /2, <i>π</i> /2)

Example: Evaluate the following.

a) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ answer: $\frac{\pi}{6}$ b) arctan -1 answer: $\frac{-\pi}{4}$ (not $\frac{3\pi}{4}$) c) $\arccos\left(\frac{-1}{2}\right)$ answer: $\frac{2\pi}{3}$ d) $\tan^{-1} 0$ answer: 0 e) $\arcsin\left(\frac{-\sqrt{2}}{2}\right)$ answer: $\frac{-\pi}{4}$

**When finding these values, you must remember your ranges of the inverse functions!

Using a Calculator

For inverse trig functions, use the [2nd] button along with the trig function.

Example : Use a calculator to evaluate the following in radians. (Set your calculator mode to radians.)						
a)	sin ⁻¹ 0.5524	answer: [2nd] [sin] 0.5524 [ENTER] ≈ 0.5852				
b)	tan ⁻¹ -3.254	answer: [2nd] [tan] -3.254 [ENTER] ≈ -1.2726				
c)	arcos 0.2345	answer: [2nd] [cos] 0.2345 [ENTER] ≈ 1.3341				

Composition of Functions

Remember: $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

Functions and their inverses "undo" each other.

So, for our inverse trig functions we have:

Inverse Properties of Trigonometric Functions

If $-1 \le \alpha \le 1$ and $\frac{-\pi}{2} \le \beta \le \frac{\pi}{2}$, then $\sin(\arcsin \alpha) = \alpha$ and $\arcsin(\sin \beta) = \beta$. If $-1 \le \alpha \le 1$ and $0 \le \beta \le \pi$, then $\cos(\arccos \alpha) = \alpha$ and $\arccos(\cos \beta) = \beta$. If $-\infty \le \alpha \le \infty$ and $\frac{-\pi}{2} \le \beta \le \frac{\pi}{2}$, then $\tan(\arctan \alpha) = \alpha$ and $\arctan(\tan \beta) = \beta$.

***Note: These properties only apply for the intervals given.

Example:

arcsin(sin $\frac{3\pi}{2}$) $\neq \frac{3\pi}{2}$ because the arcsine must be between $\frac{-\pi}{2}$ and $\frac{\pi}{2}$. arcsin(sin $\frac{3\pi}{2}$) = arcsin (-1) = $\frac{-\pi}{2}$ **Example**: Find the exact value if possible.

a) sin(arcsin 0.12) answer: 0.12 b) arctan(tan $\frac{5\pi}{6}$) answer: $\frac{-\pi}{6}$

Explanation:

 $\frac{5\pi}{6}$ does not lie in our range for arctangent. Consider the other 3 reference angles for $\frac{5\pi}{6}$ on the unit circle. They are $\frac{\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$. The only ones that fall in our range for arctangent are $\frac{\pi}{6}$ and $\frac{11\pi}{6}$ (*if* we write it as $\frac{-\pi}{6}$). According to allsintancos, the tangent of $\frac{5\pi}{6}$ is negative. The only other angle that is in our range for arctangent and has a negative tangent would be $\frac{-\pi}{6}$.

c) cos(arcos 6) *answer*. There is no angle whose cosine is 6.

Sometimes we must use right triangles to help find values.

Examples: Find the exact value.

a) $\cos(\sin^{-1}\frac{3}{5})$ Now $\sin^{-1}\frac{3}{5}$ is the angle whose sine is $\frac{3}{5}$. Since SOHCAHTOA tells us sine = $\frac{opp}{hyp}$, let's draw a right triangle, using *u* as our unknown angle. We will let the opposite side = 3 and the hypotenuse = 5. Because the sine is a positive $\frac{3}{5}$, our angle must be in Quadrant 1.

We want the cosine of this angle, which is $\frac{adj}{hyp}$. But we don't know what the adjacent side is so we use the Pythagorean Theorem to find it.

$$adj^{2} = 5^{2} - 3^{2}$$

 $adj^{2} = 16$, so $adj = 4$

So we have

We can see that the cosine is $\frac{4}{5}$. Thus cos(sin⁻¹ $\frac{3}{5}$)= $\frac{4}{5}$.

b) $sin[tan^{-1}(\frac{-1}{2})]$

 $\tan^{-1}(\frac{-1}{2})$] is an angle whose tangent is $\frac{-1}{2}$. Since our value for $\tan^{-1}(\frac{-1}{2})$ must be between $\frac{-\pi}{2}$ and $\frac{\pi}{2}$, then our angle must be in Quadrant 4 by allsintancos. Let's draw a triangle using opp = 1 and adj = 2.

**We will label the opposite side -1 to remind us that the y-coordinate in the 4th quadrant would be negative.

Use Pythagorean Theorem to find the hypotenuse.

Now we can see that the sin of this angle is $\frac{-1}{\sqrt{5}} = \frac{-\sqrt{5}}{5}$. Thus, our answer is $\sin[\tan^{-1}(\frac{-1}{2})] = \frac{-1}{\sqrt{5}} = \frac{-\sqrt{5}}{5}$. c) sin(arcos x) $0 \le x \le 1$

arcos *x* is the angle whose cosine is *x*. Since cosine is $\frac{adj}{hyp}$, let's assign *x* to the adjacent and let the hyp = 1.

By using Pythagorean's Theorem, we get that the side opposite our angle is $\sqrt{1^2 - x^2} = \sqrt{1 - x^2}$

Then the sine of this angle is $\frac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2}$.