Vectors and Dot Products

When we do vector addition or scalar multiplication, the answer is a vector. When we do the dot product, the answer will be a scalar (real number), not a vector.

Definition: The dot product of $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v \rangle$ is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$$

Example: Find the dot product of the following:

a)
$$\langle 5, -4 \rangle \cdot \langle 9, -2 \rangle$$

answer: $(5)(9) + (-4)(-2) = 45 + 8 = 53$

b) $\langle 4, 3 \rangle \cdot \langle -2, -5 \rangle$

answer: (4)(-2) + (3)(-5) = -8 + -15 = -23

c) $\langle 0, -6 \rangle \cdot \langle 3, -7 \rangle$

answer: (0)(3) + (-6)(-7) = 0 + 42 = 42

Example: If $\mathbf{v} = \langle 3, 4 \rangle$ find $\mathbf{v} \cdot \mathbf{v}$.

$$\langle 3, 4 \rangle \cdot \langle 3, 4 \rangle = 3^{2} + 4^{2} = 9 + 16 = 25$$

This is $||\mathbf{v}||^{2}$.
 $||v|| = \sqrt{3^{2} + 4^{2}}$
 $||v||^{2} = (\sqrt{3^{2} + 4^{2}})^{2}$
 $||v||^{2} = 3^{2} + 4^{2}$

Properties of Dot Products

Let **u**, **v**, and **w** be vectors in the plane or in space and let *c* be a scalar.

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2. $\mathbf{0} \cdot \mathbf{v} = 0$
3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
4. $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2$
5. $c(\mathbf{u} \cdot \mathbf{v}) = c\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot c\mathbf{v}$

Example: Let $\mathbf{u} = \langle 2, 6 \rangle = \langle -1, 5 \rangle$, and $\mathbf{w} = \langle -3, 1 \rangle$. Find the following.

a)
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$$

 $\langle 2,6 \rangle \cdot (\langle -1,5 \rangle + \langle -3,1 \rangle) = \langle 2,6 \rangle \cdot \langle -4,6 \rangle = -8 + 36 = 28$

or

$$u \cdot (v + w) = u \cdot v + u \cdot w$$

=\langle 2, 6\rangle \cdot \langle -1, 5\rangle + \langle 2, 6\rangle \cdot \langle -3, 1\rangle.
=\langle -2+30\rangle + \langle -6+6\rangle
=28 + 0
=28

b) (**u** · **v**)**w**

$$\mathbf{u} \cdot \mathbf{v} = 2(-1) + 6(5) = 28$$

 $28\mathbf{w} = 28\langle -3, 1 \rangle = \langle -84, 28 \rangle$

c) **u** · 2**v**

$$\langle 2, 6 \rangle \cdot 2 \langle -1, 5 \rangle = \langle 2, 6 \rangle \cdot \langle -2, 10 \rangle$$

= 2(-2) + 6(10)
= -4 + 60
= 56

Example: The dot product of **u** with itself is 6. What is the magnitude of **u**?

 $\mathbf{u} \cdot \mathbf{u} = 6$, but $\mathbf{u} \cdot \mathbf{u} = ||\mathbf{u}||^2$ so $6 = ||\mathbf{u}||^2$

$$6 = \left\| \mathbf{u} \right\|^2$$
$$\sqrt{6} = \sqrt{\left\| \mathbf{u} \right\|^2}$$
$$\left\| \mathbf{u} \right\| = \sqrt{6}$$

The Angle Between Two Vectors

Definition: The <u>angle between two nonzero vectors</u> is the angle θ between their respective standard position vectors, where $0 \le \theta \le \pi$.

If θ is the angle between two nonzero vectors **u** and **v**, then

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Example: Find the angle between $\mathbf{u} = \langle 4, 3 \rangle$ and $\mathbf{v} = \langle 3, 5 \rangle$

Using the arccosine function on a graphing calculator (cos⁻¹), you find that $\theta \approx 22.2^{\circ}$.

Example: Find the angle between $\mathbf{u} = \langle -2, 3 \rangle$ and $\mathbf{v} = \langle 1, -5 \rangle$

$$\cos \theta = \frac{\mathbf{U} \cdot \mathbf{V}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$
$$\cos \theta = \frac{\langle -2,3 \rangle \cdot \langle 1,-5 \rangle}{\|\langle -2,3 \rangle\| \|\langle 1,-5 \rangle\|}$$
$$\cos \theta = \frac{-17}{\sqrt{13}\sqrt{26}}$$

$$\cos^{-1}\left(\frac{-17}{13\sqrt{2}}\right) = 157.6^{\circ}$$

Alternative form of Dot Product

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

Since $||\mathbf{u}||$ and $||\mathbf{v}||$ are always positive, then the dot product and $\cos \theta$ must have the same sign.

positive dot product \rightarrow positive cosine \rightarrow acute angle negative dot product \rightarrow negative cosine \rightarrow obtuse angle

5 Possibile Orientation of vectors:

 $\frac{\pi}{2} < \theta < \pi$ -1 < cos $\theta < 0$ Obtuse Angle

 $0 < \theta < \frac{\pi}{2}$ $0 < \cos \theta < 1$ Acute Angle

 $\theta = 0$ $\cos \theta = 1$ Same Direction

Notice that for the 90° angle has cosine = 0. That means

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$
$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| (0)$$
$$\mathbf{u} \cdot \mathbf{v} = 0$$

Definition: The vectors **u** and **v** are <u>orthogonal</u> if $u \cdot v = 0$.

Look at vectors $\mathbf{u} = \langle 2, -3 \rangle$ and $\mathbf{v} = \langle 6, 4 \rangle$

 $\mathbf{u} \cdot \mathbf{v} = 6(2) + 4(-3) = 12 + (-12) = 0$

Example: Are the vectors $\mathbf{u} = \langle -4, 2 \rangle$ and $\mathbf{v} = \langle 1, 2 \rangle$ orthogonal?

 $\mathbf{u} \cdot \mathbf{v} = -4(1) + 2(2) = 0$. So, \mathbf{u} and \mathbf{v} are orthogonal.

Example: Are the vectors $\mathbf{u} = \langle 3, 4 \rangle$ and $\mathbf{v} = \langle 1, -5 \rangle$ orthogonal?

 $\mathbf{u} \cdot \mathbf{v} = 3(1) + 4(-5) = -17$. So, \mathbf{u} and \mathbf{v} are not orthogonal.

Finding Vector Components

We already know how to add 2 vectors to get a resultant vector. The resultant vector (the sum) is the diagonal of the parallelogram formed by the vectors.

What if the vectors are orthogonal?

We see that $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$.

This is called <u>decomposing a vector into the sum of two</u> <u>vector components</u>. Many times in physics and engineering, a vector needs to be decomposed into vector components.