# **Operations with Matrices**

### **Equality of Matrices**

There are three ways to represent a matrix.

- 1. A matrix can be denoted by an uppercase letter, such as A, B, or C.
- 2. A matrix can be denoted by a representative element enclosed in brackets, such as [a<sub>ij</sub>], [b<sub>ij</sub>], or [c<sub>ij</sub>].
- 3. A matrix can be denoted by a rectangular array of numbers such as

$$\mathsf{A} = [\mathsf{a}_{ij}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

**Definition**: Two matrices  $A = [a_{ij}]$  and  $B = [b_{ij}]$  are <u>equal</u> if they have the same order (m x n) and  $[a_{ij}] = [b_{ij}]$  for all i = 1, 2, ..., m and j = 1, 2, ..., n. In other words, if all of the corresponding entries are equal.

$$\begin{bmatrix} 2 & -1 \\ \sqrt{4} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 2 & 0.5 \end{bmatrix} \quad \text{but} \quad \begin{bmatrix} 2 & -1 \\ 3 & 5 \end{bmatrix} \neq \begin{bmatrix} 2 & -1 \\ 3 & 5 \\ 0 & 0 \end{bmatrix}$$

1

Testing Matrix Equality using a Graphing Calculator

- 1. Press [2<sup>nd</sup>] [MATRX] [A]
- 2. Press [2<sup>nd</sup>] [TEST] [=]
- 3. Press [2<sup>nd</sup>] [MATRX] [B] [ENTER]
  - If the matrices are of the same order, and all corresponding elements are equal, then the calculator will return the value "1."
  - If the matrices are of the same order, and all corresponding elements are not all equal, then the calculator will return the value "0."
  - If the matrices do not have the same dimensions, you will get and error message that says "DIM MISMATCH"

# Copying a Matrix

To place the contents of matrix A into the matrix B, do the following:

- 1. Press [2<sup>nd</sup>] [MATRX] [A]
- 2. Press [STO⊳]
- 3. Press [2<sup>nd</sup>] [MATRX] [B] [ENTER]

A and B are now identical matrices.

### Matrix Addition

# **Definition of Matrix Addition:**

If  $A = [a_{ij}]$  and  $B = [b_{ij}]$  are matrices of order  $m \ge n$ , their sum is the  $m \ge n$  matrix given by

$$\mathsf{A} + \mathsf{B} = [\mathsf{a}_{ij} + \mathsf{b}_{ij}].$$

\*The sum of two matrices of different orders is undefined.

**Example**: Find the following sums.

a) 
$$\begin{bmatrix} 2 & -5 \\ 4 & 3 \end{bmatrix} + \begin{bmatrix} 8 & -9 \\ 1 & -3 \end{bmatrix}$$
 b)  $\begin{bmatrix} 4 & -5 \\ -6 & 2 \\ 3 & 8 \end{bmatrix} + \begin{bmatrix} 8 & 9 \\ 6 & -1 \\ 3 & -2 \end{bmatrix}$ 

Solutions:

$$\begin{bmatrix} 10 & -14 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 12 & 4 \\ 0 & 1 \\ 6 & 6 \end{bmatrix}$$

# Scalar Multiplication

In operations with matrices, numbers are usually referred to as <u>scalars</u>.

### **Definition of Scalar Multiplication**

If  $A = [a_{ij}]$  is an  $m \ge n$  matrix and c is a scalar, the <u>scalar</u> <u>multiple</u> of A by c is the  $m \ge n$  matrix given by

$$c\mathsf{A} = [c\mathsf{a}_{ij}]$$

**Definition**: The symbol -A represents the <u>additive inverse</u> of A and equals (-1)A. Moreover, A - B = A + (-B).

**Example**: Consider the matrices:

$$A = \begin{bmatrix} 4 & -2 & 3 \\ 1 & 8 & -6 \\ 5 & -7 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 6 & 2 \\ 4 & -3 & 5 \\ 9 & -2 & 3 \end{bmatrix}$$

# Find the following:

a) 2A

$$2A = 2\begin{bmatrix} 4 & -2 & 3 \\ 1 & 8 & -6 \\ 5 & -7 & 1 \end{bmatrix} = \begin{bmatrix} 8 & -4 & 6 \\ 2 & 16 & -12 \\ 10 & -14 & 2 \end{bmatrix}$$

b) -B

$$-B = (-1)B = (-1)\begin{bmatrix} -1 & 6 & 2\\ 4 & -3 & 5\\ 9 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -6 & -2\\ -4 & 3 & -5\\ -9 & 2 & -3 \end{bmatrix}$$

c) A – B

$$A-B = \begin{bmatrix} 4 & -2 & 3 \\ 1 & 8 & -6 \\ 5 & -7 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 6 & 2 \\ 4 & -3 & 5 \\ 9 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & -8 & 1 \\ -3 & 11 & -11 \\ -4 & -5 & -2 \end{bmatrix}$$

# Matrix Operations on the Graphing Calculator

# Adding Matrices

If the matrices have the same dimensions, they can be added. To add matrix A and matrix B, do the following:

- 1. Press [2<sup>nd</sup>] [MATRX] [A]
- 2. Press [+]
- 3. Press [2<sup>nd</sup>] [MATRX] [B] [ENTER]

The resulting matrix is A + B.

\*\*\*The same method is used for subtracting matrices.

<u>Note</u>: If the matrices do not have the same dimensions, you will get and error message that says "DIM MISMATCH"

# **Scalar Multiplication**

To multiply a scalar times the matrix A, do the following:

- 1. Enter the scalar value
- 2. Press [\*] [2<sup>nd</sup>] [MATRX] [A] [ENTER]

Note: You can multiply the scalar before or after the matrix.

### Negating a Matrix

To change the signs on all of the elements of a matrix, do the following:

- 1. Enter the negation symbol [(-)]
- 2. Press [2<sup>nd</sup>] [MATRX] [A] [ENTER]

**Example**: Enter the following matrices on your calculator:

$$A = \begin{bmatrix} 2 & 4 & 6 \\ 3 & 7 & 5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & 3 \\ -4 & -5 & -6 \end{bmatrix}$$

Find the following:

- a) A + B b) 3B
  - $A + B = \begin{bmatrix} 3 & 6 & 9 \\ -1 & 2 & -1 \end{bmatrix} \qquad 3B = \begin{bmatrix} 3 & 6 & 9 \\ -12 & -15 & -18 \end{bmatrix}$

c) -A

d) 2A - B

$$-A = \begin{bmatrix} -2 & -4 & -6 \\ -3 & -7 & -5 \end{bmatrix} \qquad 2A - B = \begin{bmatrix} 3 & 6 & 9 \\ 10 & 19 & 16 \end{bmatrix}$$

**Definition**: The <u>zero matrix</u> is the  $m \ge n$  matrix given by O = [0]. The zero matrix can be any size, and consists entirely of zeros. The zero matrix is also the <u>additive</u> <u>identity</u> for the set of all  $m \ge n$  matrices.

Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be m x n matrices and let c and d be scalars.

1. 
$$A + O = O + A = A$$
  
2.  $A + B = B + A$   
3.  $A + (B + C) = (A + B) + C$   
4.  $(cd)A = c(dA)$   
5.  $1A = A$   
6.  $c(A + B) = cA + cB$   
7.  $(c + d)A = cA + dA$ 

<u>Note</u>: #6 and #7 also mean that we can factor out a common factor for any matrix.

The algebra of real numbers and the algebra of matrices have many similarities.

**Example**: Solve the matrix equation A - 2X = B, where

$$A = \begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -3 & -6 \\ 5 & 1 \end{bmatrix}$$

Solving for *X* we get  $X = -\frac{1}{2}(B - A)$ .

$$X = -\frac{1}{2} \left( \begin{bmatrix} -3 & -6 \\ 5 & 1 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix} \right)$$
$$= -\frac{1}{2} \left( \begin{bmatrix} -5 & -5 \\ 1 & -2 \end{bmatrix} \right)$$
$$= \begin{bmatrix} \frac{5}{2} & \frac{5}{2} \\ \frac{-1}{2} & 1 \end{bmatrix}$$

**Example**: Solve B - X = 2A using the matrices A and B as given above.

$$X = B - 2A$$

$$= \begin{bmatrix} -3 & -6 \\ 5 & 1 \end{bmatrix} - 2\begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & -6 \\ 5 & 1 \end{bmatrix} + \begin{bmatrix} -4 & 2 \\ -8 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} -7 & -4 \\ -3 & -5 \end{bmatrix}$$

#### Matrix Multiplication

# **Definition of Matrix Multiplication:**

If  $A = [a_{ij}]$  is an  $m \ge n$  matrix and  $B = [b_{ij}]$  is an  $n \ge p$  matrix, the product AB is an  $m \ge p$  matrix given by

$$AB = [C_{ij}]$$

where  $c_{ij} = a_{i1}b_{i1} + a_{i2}b_{i2} + a_{i3}b_{i3} + \ldots + a_{in}b_{nj}$ .

What we are doing is taking the elements in the *i*th row of *A*, multiplying them by the corresponding elements in the *j*th column of *B*, and then summing these products.

**Example**: Multiply 
$$\begin{bmatrix} -1 & 6 \\ 3 & -2 \\ 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} -3 & 2 \\ -5 & 7 \end{bmatrix}$$

For our product, we will multiply each row of the first matrix times each column of the 2<sup>nd</sup> matrix.



This entry in *row 2, column 1* came from multiplying *row 2* of the first matrix times *column 1* of the 2<sup>nd</sup> matrix.

<u>Note</u>: In order for the product to be defined, the number of columns of the first matrix must equal the number of rows of the  $2^{nd}$  matrix.

**Example**: Find the following products.

**a)** 
$$\begin{bmatrix} -1 & 0 \\ 6 & 2 \end{bmatrix} \cdot \begin{bmatrix} 5 & -2 & 7 \\ 1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} -5 & 2 & -7 \\ 32 & -12 & 48 \end{bmatrix}$$

**b)** 
$$\begin{bmatrix} 1 & 1 & -2 \\ 0 & 6 & 3 \\ 2 & -2 & -3 \end{bmatrix} \cdot \begin{bmatrix} -2 & 0 & 5 \\ 4 & 3 & -2 \\ -1 & -4 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 11 & -1 \\ 21 & 6 & -6 \\ -9 & 6 & 8 \end{bmatrix}$$

**c)** 
$$\begin{bmatrix} 2 & -5 \\ 9 & 7 \end{bmatrix} \cdot \begin{bmatrix} 3 & -1 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} -9 & -32 \\ 48 & 33 \end{bmatrix}$$

**d)** 
$$\begin{bmatrix} 1 & 3 \\ 6 & 2 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 2 & 6 \\ 4 & 7 & 7 \end{bmatrix} =$$
undefined

**e)** 
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -3 \\ 4 & 2 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 16 \end{bmatrix}$$

**f)** 
$$\begin{bmatrix} 2 & -3 & 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 15 \end{bmatrix}$$

$$\mathbf{g} \quad \begin{bmatrix} 1 \\ 2 \\ -1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 2 & -3 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 & 4 \\ 4 & -6 & 2 & 8 \\ -2 & 3 & -1 & -4 \\ 10 & -15 & 5 & 20 \end{bmatrix}$$

\*<u>Notice</u> that for **f**) and **g**) that we did not get the same answer. Even if AB and BA are defined, **matrix multiplication is, in general, not commutative**.

# Matrix Multiplication on the Graphing Calculator

If the number of columns of the first matrix equals the number of rows of the 2<sup>nd</sup> matrix, the matrices can be multiplied. (An error message will result otherwise.)

- 1. Press [2<sup>nd</sup>] [MATRX] [A]
- 2. Press [\*]
- 3. Press [2<sup>nd</sup>] [MATRX] [B] [ENTER]

The resulting matrix is A  $\cdot$  B.

**Example**: Enter the following matrices on your calculator:

$$A = \begin{bmatrix} -1 & 6 \\ 3 & -2 \\ 1 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -3 & 2 \\ -5 & 7 \end{bmatrix}$$

Find AB.

$$AB = \begin{bmatrix} -27 & 40 \\ 1 & -8 \\ -23 & 30 \end{bmatrix}$$

**Definition**: The <u>identity matrix</u> of order *n* is an *n* x *n* matrix that consists of 1's on its main diagonal and 0's everywhere else. It is denoted  $I_n$ . If it is already understood that the matrix is square, we can refer to it as simply I.

examples:
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ , and $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ 

**Example**: Multiply 
$$\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} (3)(1) + (4)(0) & (3)(0) + (4)(1) \\ (5)(1) + (6)(0) & (5)(0) + (6)(1) \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Multiplying by the identity matrix gives back the matrix we started with.

### **Properties of Matrix Multiplication**

Let A, B, and C be matrices and let c be a scalar.

1. 
$$AI_n = I_n A = A$$
  
2.  $A(BC) = (AB)C$   
3.  $A(B + C) = AB + AC$   
4.  $(A + B)C = AC + BC$   
5.  $c(AB) = (cA)B = A(cB)$ 

# **Applications**

Notice how the system 
$$\begin{cases} x+2y+3z = 4\\ 5x+6y+7z = 8\\ 9x+10y+11z = 12 \end{cases}$$

Can be written as the matrix equation AX = B, where A is the coefficient matrix and X and B are column matrices.

$$\begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 11 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 12 \end{bmatrix}$$
$$\begin{bmatrix} 1x + 2y + 3z \\ 5x + 6y + 7z \\ 9x + 10y + 11z \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 12 \end{bmatrix}$$
$$\begin{cases} x + 2y + 3z = 4 \\ 5x + 6y + 7z = 8 \\ 9x + 10y + 11z = 12 \end{cases}$$

**Example**: Write the following system of equations as a matrix equation AX = B.

$$\begin{cases} 2x + 3y + 4z = 5\\ 3x + 9y - 5z = 0\\ 5x - 3y + 5z = 9 \end{cases}$$

Solution: The matrix equation is:

$$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 9 & -5 \\ 5 & -3 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ 9 \end{bmatrix}$$

Example: Write the following system of equations as a matrix equation AX = B. Then use Gauss-Jordon elimination on the augmented matrix [A:B] to solve for the matrix X.

$$\begin{cases} 2x_1 - x_2 + 3x_3 = -11 \\ x_1 & -3x_3 = -1 \\ -x_1 + 4x_2 + 2x_3 = 2 \end{cases}$$

 $\begin{vmatrix} 2 & -1 & 3 \\ 1 & 0 & -3 \\ -1 & 4 & 2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} -11 \\ -1 \\ 2 \end{vmatrix}$ 

Solution:

The augmented matrix [A:B] is:

$$\begin{bmatrix} 2 & -1 & 3 & -11 \\ 1 & 0 & -3 & -1 \\ -1 & 4 & 2 & 2 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & -1 & 3 & -11 \\ 1 & 0 & -3 & -1 \\ -1 & 4 & 2 & 2 \end{bmatrix}$$

Solving gives:

$$\begin{bmatrix} 2 & -1 & 3 & -11 \\ 1 & 0 & -3 & -1 \\ -1 & 4 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -3 & -1 \\ 0 & 4 & -1 & 1 \\ 0 & 7 & 7 & -7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -3 & -1 \\ 0 & 4 & -1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -3 & -1 \\ 0 & 4 & -1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -3 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & -5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -3 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -3 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -3 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

The solution is  $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4 \\ 0 \\ -1 \end{bmatrix}$   $\begin{pmatrix} x_1 = -4 \\ x_2 = 0 \\ x_3 = -1 \end{pmatrix}$ 

**Example:** Two tennis teams submit equipment requests to their sponsors.

|         | Women's Team | Men's Team |
|---------|--------------|------------|
| Balls   | 50           | 48         |
| Rackets | 12           | 15         |
| Shoes   | 15           | 18         |

Each can of balls costs \$5, each racket costs \$129, and each pair of shoes costs \$79. Use matrix multiplication to find the total cost of equipment for each team.

Solution:

$$\begin{bmatrix} 5 & 129 & 79 \end{bmatrix} \cdot \begin{bmatrix} 50 & 48 \\ 12 & 15 \\ 15 & 18 \end{bmatrix} = \begin{bmatrix} 2983 & 3597 \end{bmatrix}$$

So, the total cost of equipment for the women's team is \$2,983 and the total cost of equipment for the men's team is \$3,597.