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The Binomial Theorem 
 

Remember that a binomial has 2 terms.  Look at the 

following binomial (x + y)n for several values on n. 
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What observations can you make? 
 

1. In each expansion, there are n +1 terms. 
 

2. In each expansion, x and y have symmetrical roles.  

The powers of x decrease by 1 in successive terms, 

whereas the powers of y increase by 1. 
 

3. The sum of the powers of each term is n. 
 

4. The coefficients increase and then decrease in a 
symmetric pattern. 
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The coefficients of a binomial expansion are called binomial 
coefficients.   To find them, you can use the Binomial 
Theorem. 

 
Example:  Evaluate the following. 
 
a)  510 C  

 

solution:  252
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The Binomial Theorem 
 

In the expansion of (x + y)n 
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The symbol 








r

n
 is often used in place of rnC  to denote 

binomial coefficients. 
 

*Note:  The value of r is 1 less than the number of the 

             term.  So, if r = 7, then it is the 8
th
 term. 
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b)  
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c)  412 C  

 

solution:  495
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e)  06C  
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Finding Binomial Coefficients on a Graphing Calculator 
 

To find rnC  on your calculator, do the following: 

 

1. Type in the value of n on your main screen. 
2. Press [MATH] [PRB] [nCr] 

3. Type in the value of r on your main screen. 
4. Press [ENTER]. 

 
 
Example:  Evaluate the following using the [nCr] feature on 

your graphing calculator. 
 

a)  510 C      solution:  252 

 

b)  








2

8
      solution:  28 

 

c)  47C      solution:  35 

 
d)  37C      solution:  35 

 
*Note:  The answers for c) and d) are the same because of 
the symmetric property of binomial coefficients.  This will 

always be true when the 2 numbers for r add up to the 

number for n. 
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Remember our binomial expansion: 
 

543223455 510105)( yxyyxyxyxxyx   

 
 

Each coefficient shows up twice because of the symmetric 
property of binomial coefficients.   
 
For example,  
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Each of these represents a coefficient in a binomial 
expansion, so you would expect to have it show up twice. 
 
Pascal’s Triangle 
 
The famous French mathematician Blaise Pascal created 
this triangle: 

1 
1   1 

1   2   1 
1   3   3   1 

1    4   6   4   1 
1   5   10   10   5   1 

1    6   15   20   15   6   1 
1   7   21   35   35   21  7   1 
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The first and last numbers of each line are 1, and the other 
numbers are formed by adding the 2 numbers immediately 
above the number. 
 
 
Pascal noticed that the numbers in his triangle matched the 
numbers that are binomial expansion coefficients. 
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The top row is called the “zeroth row” because the exponent 

on (x + y) is 0.  Then we have the 1
st
 row, 2

nd
 row, etc.  The 

nth row would be the expansion of (x + y)n. 
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Example:  Use the 7
th
 row of Pascal’s Triangle to find the 

binomial coefficients for (x + y)8. 
 

1       7      21    35     35      21      7       1 
 

           1       8      28     56     70      56     28      8       1 
 

887868584838281808 CCCCCCCCC                          

 
 

Example:  Expand (x + 2)4 

 

 You know that the first term, x, starts with an exponent 
of 4 and then goes down by 1 for each term. 

 You know that the 2
nd

 term, 2, starts with an exponent 
of 0 and then goes up by 1 for each term.   

 The exponents on both terms must add to 4. 

 Using the 4
th
 row of Pascal’s Triangle, you know the 

binomial coefficients. 
 
Solution:  The 4

th
 row of Pascal’s Triangle is 1, 4, 6, 4, 1. 
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Example:  Expand (3x + 4)3 
 

 You know that the first term, 3x, starts with an exponent 
of 3 and then goes down by 1 for each term. 

 You know that the 2
nd

 term, 4, starts with an exponent 
of 0 and then goes up by 1 for each term.   

 The exponents on both terms must add to 3. 

 Using the 3
rd

 row of Pascal’s Triangle, you know the 
binomial coefficients. 

 
Solution:  The 3

rd
 row of Pascal’s Triangle is 1, 3, 3, 1. 
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Example:  Expand (2x + 3)5 

 

 You know that the first term, 2x, starts with an exponent 
of 5 and then goes down by 1 for each term. 

 You know that the 2
nd

 term, 3, starts with an exponent 
of 0 and then goes up by 1 for each term.   

 The exponents on both terms must add to 5. 

 Using the 5
th
 row of Pascal’s Triangle, you know the 

binomial coefficients. 
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Solution:  The 5
th
 row of Pascal’s Triangle is 1,5,10,10,5,1. 
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Expanding Binomials with Differences 
 

To expand binomials with differences rather than sums, the 
signs will alternate. 
 

Example:  Expand (x - 5)4 
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Example:  Expand (x2 + 2)3 

 
Solution:  The 3

rd
 row of Pascal’s Triangle is 1, 3, 3, 1. 
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Example:  Find the 6
th
 term of (k + 2m)8 

 

Solution:  Remember the 8
th
 row of Pascal’s Triangle from 

the beginning of this lesson. 
 

1       7      21    35     35      21      7       1 
 

           1       8      28     56     70      56     28      8       1 
 

887868584838281808 CCCCCCCCC                          

 
The coefficient of each term is  rnC .  We know that n = 8.  

Since r starts with 0 for the first term, the 6
th
 term will have  

r = 5. (r is always 1 less than the term position.) 
 

So, 5658 C  is the coefficient.  
 

The Binomial Theorem says that 
nnrrn
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nnn ynxyyxCynxxyx   11 ......)(  

 

We see that each term is of the form 
rrn

rn yxC 
. 

We know that for our problem: 

n = 8 (because our binomial is raised to 8th power),  

r = 5 (because it is the 6
th
 term that we are looking for), 

x = k (because the 1
st
 term in our binomial is k), and  

y = 2m (because the 2
nd

 term in our binomial is m).   
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Example:  Find the coefficient of the term 
56ba in the 

expansion of 
11)23( ba  . 

 

Solution:  We know 
56ba  came from 

rrn
rn yxC 

.  We 

already know that n = 11. This tells us that r 
must be 5.  This means we have 
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So, the coefficient is -10,777,536. 
 

 
 
 


